Veritpal

A friendly introduction to formal methods
Jfor real-world cryptographic protocols

.‘]Ih International Association

| o] |) '
~gpv. for Cryptologic Research

OOOOOOOOOO

Nadim Kobeissi, Georgio Nicolas
Eurocrypt 2022 — May 29th, 2022

Workshop Expectations

This workshop 1s for beginners This workshop will greatly bore

. You will benefit if: non-beginners

« You are new to formal modeling of - You will fall asleep here if:
cryptographic protocols « You're well-versed in ProVerif,

« You are new to the “tool-assisted”, CryptoVerif, Tamarin. ..
“automated analysis™ of cryptographic « You have strong familiarity with
protocols modeling and breaking security protocols

« You are new to cryptographic protocols, . If the above is you, consider attending
period another Eurocrypt 2022 workshop today,

for your own sake.

Seriously, there are other events

1st Annual FHE.org Conference on
Fully Homomorphic Encryption

The 3rd International Workshop on

Workshop website Code-Based Cryptography (Day 1)
Room: Cosmos 3C/D Workshop website

Organizers: Pascal Pailler (Zama), Jeremy Room: Cosmos 3B

Bradley (Zama), llaria Chillotti (Zama), Qian Organizers: Jean-Christophe

ou (Samsung Electronics America), Cristian (ENAC)
(Omnia), Florent Michel (Optalysys),
y Zaccherini (Zama)

Workshop Overview

@

— >
Intro to Protocols & Verifpal Automated Verification Safari
o Introduction and Software Setup « A Look at ProVerif
« Learning Verifpal with Examples « Coffee Break
. Coffee Break « A Look at CryptoVerif and a very brief

Modeling Signal in Verifpal discussion of F*

Lunch Break « Q&A, Discussion

Data Security

« Deploying software in the real world requires
solutions that alleviate actual security risks

o It 1s equally important to:
1. Define our problem
2. Attempt a solution

3. Assess whether the solution actually
reduces the risk to an acceptable amount

« While this may look nice and simple from a
distance, most security breaches are a result
of failing at steps 1 and 3

1 IMAGINATION -

A CRYPTO NERD'S

HIS LAPTOP'S ENCRYPTED.
LETS BUILD A MILLION-DOULAR
CLUST ER To CRACK \T-

NO GooD! TS
uoGe -R\T RSP\‘
BLAST! ‘ OUR
EVIL PLAN
\S FOWED!

WHAT WOULD

ACTUALLY HAPPEN:

HIS LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH
THIS $5 WRENCH UNTIL
HE TELLS LS THE PASSWORD.

GOT' T,

@W

Our Scope

 Data can be:
« At Rest (stored on a disk)
o In Use (input for a computation)

« In Transit (transferred over a channel)

« We will be focusing on Data In Transit

What are cryptographic protocols?

o oo Bob
« More specifically, “secure channel protocols”. —

Has identity (anhb: aﬂg)é(gawh:ga“”) Has identity (bsdn, baig), (972", g*i%)
Knows identity (g”3¢», g"+i9) Knows identity (g@3d*, g%#is)

Has signed pre-key bs, g%

« We use them to communicate and do things! SN a5

ac € Zyp
S=cy ‘gﬂsdh"» |gﬂcb3dh |gacb., | ga‘-bu

« When you send a message over Signal/ (et = WOFS)

Qo € Ly

Kohared = g%’
ats pp e (rkab, ckab) <= HKDF (Kshareds Thba, c2)

kene <= HKDF(HMAC(ckab, c3), €1, ca)

g"3dr, g*sis, g%, g, By = ENC(Kene, Mo, g*34h | g*«is | ghaan | gbeio | go')

« When you open a website over HTTPS...

S = co | gasants | gacbaan | gacbs | gacbo
(7kba, ckba) <= HKDF(S, c1,c2)

Delete pre-key(bo, gb“)

« When you pay for a dinner using your P

(rkab, ckab) <= HKDF (kshared, Tkba, c2)

. kenc <= HKDF(HMAC(ckab, c3), c1, ca)
deblt Card Mo <= DEC(Kenc, Eo, g*3" | g*+is | gbser | gbeis | g%')
e o o

be €Zyp

Kshared = g
(Tkba, ckba) <= HKDF(kshared, Tkab, c2)
kene <= HKDF(HMAC(ckpq, c3), €1, ¢4)

aurbe

9", Bt = ENC(kene, My, g°3%% | g*is | g™sen | g%is | gP)

b
Kshared = g%¢

(rkba, ckba) <= HKDF (Kshared, kab, c2)
kene <= HKDF(HMAC(ckpq, c3), €1, ¢a)
M <= DEC(kene, Er, g* | g*ia | gsen | g%t | gP<)

-

Secure Channel Protocol Design Ingredients

Principals ==

® Has identity (asan, asig), (9", g***¢) Has identity (bsdn, baig), (972", g*i%)
Knows identity (g®sar, g®siv) Knows identity (g@3d*, g%#is)
Has signed pre-key bs, g%
b b SIGN(buig, g), o™ Has one-time pre-key b, g*°
« Set of communication channels)
(kba, ckba) HKDF(S, c1, c2)
etween principals) = WEDF(S .
Qo € Zyp
Ksharea = g%<’b*
e o (rkab, ckab) <= HKDF (kshared, Tkba, c2)
o Initial state for each party ke 4 RO WAl) .
g"3dr, g*sis, g%, g, By = ENC(Kene, Mo, g*34h | g*«is | ghaan | gbeio | go')
° S=co | ga.w,m | gﬂrb.ldh ‘ ga(»b.« ‘ gacbo
L] PI' OtOCOl o (Drekl.;; ;kri]){e;:(bm;?s(s c1,ca)

Kunarea = g%<'®

(rkab, ckab) <= HKDF (kshared, Tkba, c2)

kenc <= HKDF(HMAC(ckab, c3), c1, ca)
« Update state, b ot T e

be €Zyp

 Perform computations, e o)

kene <= HKDF(HMAC(ckpq, c3), €1, ¢4)

« Send/receive messages over B NGl Mg 2 142 0)

b
Kshared = g%¢

(rkba, ckba) <= HKDF (Kshared, kab, c2)

communication channels... e i | g 14
— —

What Makes Up a Protocol?

« Symmetric primitives: « Principals:
« AES for encryption, « One or more parties involved in the
. SHA-2 for hashing execution of an instance of a
protocol
« Asymmetric primitives:
« Messages:

« RSA for asymmetric encryption,
o Sent across a network or out-of-

« Diffie-Hellman (ECDH, etc.) for band
key agreement,

« DSA, ECDSA, etc. for public key
signatures...

o Formalizations: “Dolev-Yao model”

Reasoning About Cryptographic Protocols

« What 1s our goal?
« Authentication (between parties), confidentiality, non-repudiation...
« How will we achieve the goal(s)?

« Using cryptographic protocols (which in turn employ primitives like encryption,
signing, hashing...)

« Who are we protecting ourselves against?

A disgruntled employee, the government, an ex-partner, a dead person, any
attacker 1n the middle between two nodes on the internet, all of them at once...

« What can the attacker do (use your imagination)

Security Properties Provided by Protocols

. Secrecy
. If A sends some secret message M to B, then nobody except A and B can obtain M.
« Indistinguishability

. If A randomly chooses between two messages Mo, M; (of the same size) and sends one of
them to B, the attacker cannot distinguish (within the constraints of the cryptographic
model) which message was sent.

« Forward Secrecy

. If A sends a secret message M to B and if A and B’s long-term secrets are subsequently
compromised, the message M remains secret.

. Future Secrecy

« Suppose A sends M in a session state T, then receives N, then sends My . If the session state
T 1s subsequently compromised, the message My remains secret.

Alleged Security vs Provable Security

« Protocol design on pen and paper can be easy.

« Proving that a protocol can guarantee security properties given a specific use case 1s
much harder.

. Are we sure that a protocol does what it claims on the tin?

What can go wrong 1n this scenario?

« A remote key fob and a car
paired by being
programmed with the same
random static secret.

« The car decrypts and
executes commands

transmitted in ciphertext by
the key fob.

knows private secretkey
knows public lock_command
knows public unlock_command

knows private secretkey

knows public lock _command

knows public unlock_command
encryptedcommand = ENC(secretkey,

lock_command)

encryptedcommand

decryptedcommand = DEC(secretkey, encryptedcommand)
_ = ASSERT(lock_command, decryptedcommand)?

H Keyfob

Unoriginal-Rice-Patty (CVE-2019-20626)

« A hacker can gain complete and unlimited access to
locking, unlocking, controlling the windows, opening
the trunk, and starting the engine of the target vehicle.

« The only way to prevent the attack is to either never
use the remote fob or, reset the programmed key after
being compromised at the dealership (which would be
difficult to realise).

o Vehicles as new as a 2020 Honda Civic are
vulnerable.

« A rolling-code based protocol 1s more secure.

Modelling our Assumptions Correctly

« The results of a formal methods tool are as strong as the assumptions we provide it
with.

« If we model the attacker to have less capabilities than expected in real life, then we
could miss certain classes of attacks.

« For the previous example, the attacker never got their hands on the secret key, yet
they were still able to unlock the car. An attacker able to replay messages was not
considered 1n the threat model.

« The security of the cryptographic primitives employed play an equally important
role: base64 encryption can be broken without a key because it doesn’t use one,
RSA-2048 can be broken with a quantum computer...

XX Handshake Pattern Analysis

Message A

Message A, sent by the initiator, does not benefit from sender authentication
@ = AN and does not provide message integrity. It could have been sent by any party,

7 including an active attacker. Message contents do not benefit from message
secrecy even against a purely passive attacker and any forward secrecy is out of
the question.

Noise XX Protocol el

Message B, sent by the responder, benefits from sender authentication and is
resistant to Key Compromise Impersonation. Assuming the corresponding
e, ee, s, es @ private keys are secure, this authentication cannot be forged. However, if the

responder carries out a separate session with a separate, compromised
initiator, this other session can be used to forge the authentication of this

» The communication channel satisfies T e e
. . . active attacker.
different security properties at before,
after, and during eaCh Stage Of the S, se Message C, sent by the initiator, benefits from sender and receiver
) . @ authentication and is resistant to Key Compromise Impersonation. Assuming
prOtOCOI S executlon the corresponding private keys are secure, this authentication cannot be forged.

Message contents benefit from message secrecy and strong forward secrecy. if
the ephemeral private keys are secure and the responder is not being actively
impersonated by an active attacker, message contents cannot be decrypted.

 Protocol between 2 parties

N

Message C

A\ 4

(4,5
P Message D
N\ <D> Message D, sent by the responder, benefits from sender and receiver

authentication and is resistant to Key Compromise Impersonation. Assuming
the corresponding private keys are secure, this authentication cannot be forged.
Message contents benefit from message secrecy and strong forward secrecy. if
the ephemeral private keys are secure and the initiator is not being actively
impersonated by an active attacker, message contents cannot be decrypted.

Message E

Message E, sent by the initiator, benefits from sender and receiver
authentication and is resistant to Key Compromise Impersonation. Assuming
the corresponding private keys are secure, this authentication cannot be forged.
Message contents benefit from message secrecy and strong forward secrecy: if
the ephemeral private keys are secure and the responder is not being actively
impersonated by an active attacker, message contents cannot be decrypted.

VvV

What are formal methods?

« Allows us to:
« Define our systems using a ‘“Mathematical Framework™

« Reason about our definitions in said framework using the
provided rules to define certain properties and check if our
definitions comply with our targeted properties

« Model at different layers of abstractions

« Trace back our decisions

« Can be employed at different stages of development

« Certain frameworks give us special superpowers (HoI'T: programs
are proofs)

« Can leverage the power of computers: “Theorem Provers”, “SAT-
Solvers™, “Static Analysis”, “Verified Compilers”...

Methods

Formal
Methods

17

Why are formal methods important?

 Since we can verify properties in general using formal methods, why not verify security
properties of our crypto constructions!

« We are required to provide some definitions before obtaining results:

« Primitive choice (Perfect Hash Function vs MD-2 vs SHA-3, Ideal MPC vs BGW,
Perfect Encryption vs 2DES vs AES-256...)

« Adversary resources and capabilities (“Active”, Encryption + Decryption Oracle,
Honest but Curious, the NSA...)

 Properties (“Security”, Confidentiality, Binding, Forward Secrecy, IND-CCA,
Correctness...)

. The more intricate our models are, the more confidence we gain. However, we can still
obtain results using abstract models.

Protocol Security by Design

« Protocol designers can employ formal
methods at the design stage to verify that
their constructions are secure by design.

« While this process requires more time to
be invested modeling early on, it yields
more robust and trustworthy protocols at
deployment time.

« Formal Methods were employed during
the design process of TLS 1.3, which 1s
expected to have a much longer lifespan
than previous versions of TLS.

[_.imitations and discussion of automated
“proofs’

pid2 rew! Set.
have : map _share pml o S5, Public_encoding x) < map. (35,06t party. share pidl) (ap S5.pubTic encoding). rewrite o> />, rewrite /pidl m /> rewrite (unzipl eum $5.pid_set) => />. rewrite SS.size_public_encoding = />. rewrite nth_in =
5. rewrite size g
rewrite /get_j pmy,snare 2p_comp /(\0) =
have : osame (f 0 hare
anth

. . L] “
E,V€|| 1' tI 11S glVGS YOu d pl 010) I n T R T T T

>. rewrite lsame_eq lsameP = />L.

. ap (Tun (o < Secsecreint) = oget atsoc (public_encoding x0) pid1)) x) 1
nth (map (fun (x0 : SS.secret_t) — oget (assoc (public_encoding x8) pidl)) y) i). rewrite L = />. rewrite ‘onth_m Clear L. rewrite !(onth_nth witness) = />. rewrite Sz = />. rewrite /pid = />. rewrite lassoc_nth_sone => />. rewrite size_public_2
O l l l'us 1 ﬁenmﬂ)ng o s Tt (ot we o PRuite B It o /o Churiin BIATD < /o, FRurith Inamoc T Nt v fo. TMTIIS Hi PUNTIC aMcling m frr CATISS thay v For' uFii P4 s mier . 751
rite eq2 = />. qed.
. Teatize VL1 share. move = r ss. revrite /valid_secret /valid_rand /secret_public /valid_shares /share 1allP /to_pids_t size nap = />H HO. rewrite -inap_comp /(o) => />, rewrite nap_id = />. move = H1 i Hi.
rewrite allP = />j Hj. rewrite /get_party_share = />. rew oc_map_ = /2. Teurite Wi M) = /o, rewrite CTnap cop /(o) — /o, rewrite lsize nap = /o, rewrite alle —
rite 'in_nth = />. move = n. te 2ip = /> sizemap = />, rewrite !size_zip = />. rewrite 'O Inin_eq = /i 2. reurite inch_onth ! onth. nth (witness,witness />. rewrite Isize zip = />. rewrite isize_map
ste tsize_alp =/>. revriie o imin_eq = /-. Teurite 1size nap oo fo. rewriTe) (nth map WiReSs) s> /o, reurite ISITe Tip o /. TeNTIte HO MIn-63 mo /. Tewrite Lsize 11— /o Ferite HO min.eq > /5. reurite nthionth I(ontn nth (iiness.wh
sitness)) = ite size_zip HO hin_eq = / .
have - SS.valid shares Nt witness £) (nth witness ss). - rewrite S5.valid_share => />. rewri o rewrite nihin = o case (0 < size 1) <> /12, have ; Valid_rand (nth witness ¢ n,secret_public (nth witness s 1)."1 (nth witess ¢ n,secretpub?
Slic nth witnéss ss). 2, rewrite M1 > /o rrite dnth = /o ecists 0 = /o rewriie size s size "Rap 10 alr. 44 o /2. reTIEe Inth.onth 1 (Onth_nh (VLtnesswAiness)) = /o ewrite $156 715 SL26-Rap o /or FOMFIte N AIn 4 = /5. rewrite nhosip = so. FeRFt
>/, rewrite !(nth_map witness . progress. have : false. sut()- progress.

> />H2 H3. have : all (fun (}@ : SS.pid_t) = Consistent_shares i jO (oget (assoc (share (nth witness r n) (nth witness ss n)) i) (oget (assoc (share (nth witness r n) (nth witness ss n)) j0))) SS.pid_set. rewrite H3 =2

3
rew
rite allP = />H3. rewr’ > />. qed.
realize public_encoding_reconstruct. move => s pid H
rewrite /pub_reconstruct /public_encoding /to_pids_t => />. rewrite assoc_map_r = /. rewrite K = />. rewrite -Inap_com /(\o) /get_party_ share => />, rewrite id_map => />X. rewrite S5.public_encoding_recanstruct => />. qed.
realize v ve = ss. /> split.
move => x. rewr. X
r ness

revrite’/valid_shares /valid_secret /réconstruct_rand /reconstruct /valid_rand " rewrite TALTP o, reurite isize sap = />

in2p_comp /(\0) = /> rewrite innth = /ol rewite lsize map > /o, rewrite size iseq = /. rewrite ged max — 7o, rewrite size pids tge0 = />, move = Hil hi2
e revrite Size_iseq T /5. rerite Qed_max = />, rewrite size pids.t.0e8 <> /o, rewrite nth.i />. rewrite Hil Hi2 = />. rewrite SS.valid_secret_reconstruct = |>. rewrite /valid_shares = />. rewrite -nap_conp /(\o) 'allp
have’: size 5o < . have su: unzipl size Listsecretsharingschene.pid_set. revrite H = />, revrite size_nap size pid_set = /. move = 1.
have : size_pids_t = size (oget assu: ss k1)). rewrite /size_pids_t => />. rewrite !(onth_nth mtn:ss => />. rewrite Sz n_gt® => />. have : all (fun (j : pid_t! consistent_shares (nth witness ss 0).°1 j (get_party_share r\(h mtness ss 8).°1 ss) (get_party @
ashare 3 56)) Lisvsecretanar ingschencspid sets reurite HO me /o, remriie 1o (Unzipd ss) (unzip2 $5))- rewrite zip-unzip i s)) ="/>. rewrite size zip !size_map = />. rewrite min_eq = />. rewrite Sz n_gto = />. ra
Seurite nth_gip = /-, rewrite Isize map = /5. rewrite H = />, rewrite nih_in = />. rewrite size pid set = />, _gt0 = />, rewrite a . nth witness o5 01. 1 ki (get_party_share (nth Vithess s5 0).'1 5)" (get.party_share kb
e o o 4 = />. rewrite /consistent_shares /get_party_share = />, rewrite allP /consistent_shares = />H5 Ve :H5. rewrite assoc_nth some —> />. rewrite Sz n_gtd = />. rewrite pid_set_uniq = />:
have fun) pid_t) => consistent_shares k1 j (get_party_share k1 ss) (get_party_share j ss. L:slsecrusharmgschme pid_set. rewrite HO => />. clear HO. rewrite allP => />H0. have : consistent_shares kl kZ ge(par!y_share k1 ss) (get_party_share k2 ss). @
/>. clear HO. Tewrite /get_party_share = />. rewrite a />H0 HL. rewrite 'assoc_map_prod = />. rewrite iomap_somé = />. rewrile assocTP = />. rewrite H = /. rewrite assocTP = />. rewrite H = />.
e Witness (oget (astoc o6 KiT) donth withess. (opet (3650t 4o K2 1) have | consioten. ares k2 pp. 1 pp. 2 rewrite i rewrite /op < /- rewrite S0t = [existe L < [Tewrite laize zip > /2. rewrite 0 nin eq = /2. rewrite Intha
& _onth unth nth (witness,witness > />. rewrite size_zip HO min_eq => />. rewrite -HO -5212 => />. rewrite N > />. rewrite nth_zip rewrite !(onth_nth witness) => />. rewrite -5212 => />. rewrite > />. rewrite /pp
move => X. rewrite in_n !size_map => />. rewrite !size_iseq => />. rewrite !ged_m: /n rewrite size_pids_t_ge® />. rewrite min_g 1 Hi2. rewrite !nth_onth !(onth_nth wnness u)(ness /> rcur)(c sxzc _zip !size_map /=2
o, rewrite size. ise X eurite size pids f g0 = /.
have : Uistvalid_shares s5. rewrite /LSt valid. shares > /5. rearite allP = />k1 KL, rewrite allP = />k2 HK2. have : all (fun (j : pid_t) = consistent_shares ki § (get_party_ share K1 ss) (get_party_share ss)) ListSecretSharingSchene.pid_set. rewrite o = /2

x p:
G-, clar HO. rearite Tollr = /oHo. have - consystent nares KI K2 (get party-chare KL so) (get party_share k2 Se). rerite HO = /ou clbar MO, rewrite. Jconsistont. shares Jger party

rewrite Inth_zip = |>. rewne size map = |>. Teurite (nth.map witness) = . reurite size fronpids t ='|>, Tewrite size iseq o />, rewrite 00, max o 7o, redrive Size piis t ge8 o /o Tewrite size b Sire_trom pids_t = />, rewrite size_fron_pids_t = />3
6. revrite size_iseq = />, rewrite ged sax > />, rewrite size pms €0 = />. rewrite Inth_iseq Hil Hi2 = />.

Tewrite SS-valid_rand. reconstruct = /> urite -tusp_conp /(\o) = /> rerite 'allp = />k1 Hkl. rewrite allP

have : size ss = n. have = >, mo sz.

e size (unzipd 55 s SetretSharinghchene pidsets remrite H o 7. rewrite size i sive pid_set nove
sizepidst 38 = size (oget (as60c 55 KI)). rewrite /5ize pids.t oo /br Tewrite !(onth.nth Witness) = /. TewFite ST n.Gt0 = /v. have : all (fun id_t) = consistent_shares (nth witness ss 0).'1 j (get_party_share (nth witness ss 0).'1 ss) (get_party_2
Sshare j ss)) ListSecretSharingSchene.pid_set. rewrite Ho = />. rewrite unzipl s5) (unzsp2 s5)). rewrite zipunzsp = />, rewrite (nth-onth) (onth nth (withess,witness)) /. reurite sizezip lsizenap = /o, rewrite nin.eq = />, rewrite Sz ngte = />. 78
. _pid 1 k1 (get_party_share (nth witness ss 0).'1 ss) (get_party_share k2

s

evrite nth_zip = />, rewrite lsizenap > />, rewrite H = />, rewrite 1€h_in = /> revrite sizepld set = />, rewrite ngto = />, revrite allp = /4, have cunsmem,snares nth witness ss 0],
). rewrite Hi = />. rewrite /consistent_shares /get_party_share rewrite allP / HS_Hi _nth_s > />. rewrite H pid_set_uniq

have - all (fun (5 : pid t) = consistent shares K13 (get_party_share K s (get party share j 55)) ListSecretsharingchene.pid_set. rewrite B0 = />. clear H0. rewriTe allp L /H. have | comsistent_shares K1 k2 (getparty_share kI ss) (get_party_share k2 ss). @
/>. clear e = />. rewrite allP = />H0 H1. rewrite !'assoc_map_prod rewrite lonap_some => />. rewrite assocTP H = />. rewrite assocTP H = />.
pose pp := (nth s K1) 1, 1) have : Consistent. shares ki k2 pp. 1 pp. 2. rewrite H1 />. rewrite /pp n_nth o /o. exists i — /. rewrite isize zip = />. rewrite HO min_eq = />. rewrite -0 5212 = />. rea
o o o > />, re e_zi) mir > o reurite 5212 = 7>, reurite nth_tip = />, reurite !(onth_nth witness) = />, rewrite -5z12 = />. revrite 40 5212 = />, rewrite /pp = />."qed.

realize complete. move => ss. rewrite /share /reconstruct_rand /reconstruct = |>H

> move = 5212,

have : size s = n. have : size (unzipl s5) = size (ListSecretsharingSchene.pid set). move :H. rewrite /valid_shares — /o 0. rewrite H = />. rewrite size nap size pid set = />. move = HL.
ferite ~(to_fronpids_t ss). move :H. rewrite /valid.shares /istvalid_shares lallp = /> Ho. mov Hx. rewrite al W
ve : all (Tun (1 : PLA_U) = consistent-shares x 3 Tget. arty_share x 35) (get p Darey_share § 4s]) ListSecreiShar ngschene.pid oat.” reurite WO = />, clear WO, rewrite 1allp = />H. have : cansistent_shares x y (get_party_share x ss) (get_party_share y s5). rewria
e HO o /s Clear WO, rebrite. /consiatent ahares soct arty Share o s revrite SUTF s 7on M.
congr. progress. apply (eq_from_nth witness) = |>. rewrite !size nap = |>. rewrite !size_zip = |>. reurite isizenap o |-, rerite tofron pds t nove = n. rewrite !size map = |>. rewrite !size zip rewrite !size map = |>. rewrite from_to_pids_ta
eurite to_fron pids.t ~ rewrite ged_m reurite size_pids_t g 1 Hnl Hn2.
> | >. rewrite size_is rite ged_max =

Tite site pms 2960 = >, rewrite size_iseq
_ge0 2ip = |>.

rewrite geo_max = rewrite size_pids_t_ged =
o TeNrAtE Isize 156q 1060 max > /o, rewrite size.pids.f rewrite Inth_z ap >

rewrite Isize_m 75 resrite !(onth_nth uitness

1t map =
Terite tsize.zip 1size nap

rewrite size_iseq = |>. 2

. rewrite size_pids_t_ged => [>. rewrite size_from_pids_t = |>. rewrite size_iseq = |>. rewrite ged_max => |>. rewrite size_pids_t_geo = |>

Tewrite S5.conptet Fite mth.iseq > |>e reurite M A2
rve iH. rewrite /valid shares ta W2 3. rewrite -sap_conp /(\0
move = x_ Hx.

Being verified by software which S e euttorak

/.

- oget (assoc ss X)). rewrite /size_pids_t = />. rewrite !(onth_nth witness) => />. rewrite H1 n_gt0 => />. have : all (fun pid_t) => consistent_shares (nth witness 55 0).'1 j (get_party_share (nth witness s5 0).'1 55) (get_party_s2
share j ss)) ListsecretsharingSchene. pid_ set. rewrite 13 > />, rewrite (Ciss-zip (unzipl s5) (unzip? ss)). rewrite 2ip unzip = /5. rewn: Mehconth) (onth_nih (Vitheds,wisness)) o Tos reurite Sire sip. 1Sire_na /o reLTite minsq o Joy reurite HL n.gt0 o 1o Feb

Gurite nth-zip = /. reurite size map = />, rewrite 2 — /. reurite ithin = /-, rewrite sizepid set = /2. rewrite n_gto

TiSe BUIP oo /e have- Coneistent shares.(nth witness 55 0): 1 x T9et_party_share. (nih wEwness 55 0). 1 55) (36t Porcy_share x s5). rewrite WA = /> revrite /consistent_shares /get_party_share = />, rewrite allP /consistent_shares = />#5 HG.
nove <M. rewrite assoc.nth sone = /v rewrite HL NGO s /o Tewrite H Bid SETUNQ - /. move S2.
D) . have 3l (fun () : pi3_t) "= consistent_shares x J (get_party.share x s5) (get.garty share] 55)) ListSecretsharingschene. pid_set. rewrite H3 = [>. clear 3. reurite allP = />H3 y Hy. have : consistent shares x y (get_party_share x 55) (get_party_share y s5). @
Srevrite 13 = />. clear K3, Feurite /consistent_shares /getparty_share = />. reuriie lassoc_sap_pro rewrite allP = |> H3 Hd.
reurite. lomsp_sone = />, reurite ssaoctp <> />, reurlte b2 = /.. “rewrite assocTp = e H2 = />
e p := ((nth witness (oget (assoc ss x)) n), (nth mtness oget (assoc ss

Rave © consistent shares x Xy p.1p. 2. rewrite K4 ewrite /p in nth = />. exist
— sou L66 Gitomaln ' (Easyeryps Seript)

rewrite !(nth_onth) !(onth nth (witness,witness)) = />. rewrite size_zip => />. rewrite H3 min_eq => />. rewrite -H3 -5z = />. rewd

n = />. rewrite size zip H3 min_eq

Is the term “proof™ too strong?

20

Bugs 1n Protocol Implementations

« The people who design a protocol are not Real World Disasters:
always the ones who implement/deploy it

. « Psychic Signatures (Java)
in the real world.

« Solana/Whatever current crypto

« Subtle bugs in protocol implementations exchange hack (millions of dollars)

can compromise the security guarantees

provided by a protocol. « Libp2p not validating signatures (TS,

. . recent)
> Can we ensure that our implementations

reflect our protocol design
considerations? « TLS with same server key for all clients
as an optimisation

« Nonce reuse disasters

Complexity of Cryptographic Proofs

: C el Breaking Rainbow Takes a Weekend on a Lapto
o Security proofs about primitives or 8 ptop

protocols can be hard to understand in
some cases, let alone reproduce and
verify.

Ward Beullens

IBM Research, Zurich, Switzerland
wbe@zurich.ibm.com

- Can we compose our proofs in a

Abstract. This work introduces new key recovery attacks against the

IIlOdlllar al’ld Vﬁrlflable Way SUCh that the Rainbow signature scheme, which is one of the three finalist signature
. schemes still in the NIST Post-Quantum Cryptography standardization

Ic aders WOllld be able tO repllc ate the project. The new attacks outperform previously known attacks for all the
parameter sets submitted to NIST and make a key-recovery practical for

11 1 1 the SL 1 parameters. Concretely, given a Rainbow public key for the
Verlflcatl()n procedure on thelr own tO SL 1 parameters of the second-round submission, our attack returns the

corresponding secret key after on average 53 hours (one weekend) of

validate the claims of the authors? computation time on & standard laptop,

Formal Verification Today

Code and Implementations: F* \

. Exports type checks to the Z3 theorem
prover.

« Can produce provably functionally

correct implementations of primitives
(e.g. Curve25519 in HACLxN).

« Can produce provably functionally
correct protocol implementations

Qignal*). J

Protocols: ProVerif, Tamarin

. Take models of protocols (Signal, TLS)
and find contradictions to queries.

 Are limited to the “symbolic model”,
CryptoVerif works in the “computational
model”.

23

Symbolic and Computational Models

Symbolic Model

« No algebraic or numeric values.
« Can be fully automated.

« Produces verification of no
contradictions (theorem assures no
missed attacks).

\

. Primitives are “perfect” black boxes.

~

Computational Model

« Primitives are nuanced (IND-CPA, IND-
CCA, etc.)

 Security bounds (2128, etc.)
« Human-assisted.

« Produces game-based proofs, similar
technique to hand proofs.

24

Symbolic Verification
Overview

Main tools: ProVerif. Tamarin. Tool Unbound Eqg-thy State Trace Equiv Link
U . del of [. CPSA [17] o O o [O O
ser writes a model of a protocol in action: F7 [18] P o P PY o °
« Signal AKE, bunch of messages between Alice and Bob, Maude-NPA [19] o ® O o o O
« TLS 1.3 session between a server and a bunch of clients, Pro Verif [20] o () O o o O
« ACME for Let’s Encrypt (with domain name ownership Scyther [21] ® O O o O O
confirmation...) Tamarin [22] o (] o o o O
: : DEEPSPEC [23] O [) o O o O
User writes queries:
_ _ e VERIFPAL () 0 o () () ()
o “Can someone impersonate the server to the clients?” 4
o “Can a client hijack another client’s simultaneous SoK: Computer-Aided Cryptography
connection to the server?” Manuel Barbosa and Gilles Barthe and Karthik Bhargavan and Bruno Blanchet and Cas

Cremers and Kevin Liao and Bryan Parno
ProVerif and Tamarin try to find contradictions.

Symbolic Verificatj

el results: \

Curve Attacks on
kson

ﬁesearoh in symbolig

o Prime, Order Pleas
Protocols using Di

e S Legit: A Is that Use Si —
NSO SO WHY ISN'T IT T
« Many papers pub us ED MO QE':)'/ ication proving

(and finding atta , Bluetooth, 5G
and much more

o This 1s a great better about

their protocols'®

26

Tamarin and ProVerif: Examples

rule Get_pk:
[!'Pk(A, pk) 1]
_)
[out(pk) 1

// Protocol
rule Init_1:
[Fr(~ekI), !'Ltk($I, 1tkI)]
H
[Init_1($I, $R, ~ekI)
, Out(<$I, $R, 'g' ~ ~ekI, sign{'1', $I, $R,'g"' ~ ~ekI }
TtkI>)]

rule Init_2:
let Y = 'g'" ~ z // think of this as a group element check
in
[Init_1(C $I, $R, ~ekI)
, 'PK($R, pk(LtkR))
, InC <$R, $I, VY, sign{'2', $R, $I, Y }LtkR>)
]

--[SessionKey($I,$R, Y ~ ~ekI)

, ExpR(z)
1-
[InitiatorKey($I,$R, Y ~ ~ekI)]

letfun writeMessage_a(me:principal, them:principal,
hs:handshakestate, payload:bitstring, sid:sessionid) =

let (ss:symmetricstate, s:keypair, e:keypair, rs:key,
re:key, psk:key, initiator:bool) = handshakestateunpack(hs) in

let (ne:bitstring, ns:bitstring, ciphertext:bitstring) =
(empty, empty, empty) in

let e = generate_keypair(key_e(me, them, sid)) in

let ne = key2bit(getpublickey(e)) in

let ss = mixHash(ss, ne) in

let ss = mixKey(ss, getpublickey(e)) in

let ss = mixKey(ss, dh(e, rs)) in

let s = generate_keypair(key_s(me)) in

[..]

event(RecvMsg(bob, alice, stagepack_c(sid_b), m)) =
(event(SendMsg(alice, c, stagepack_c(sid_a), m))) ||
((event(LeakS(phase®, alice))) && (event(LeakPsk(phase0,
alice, bob)))) || ((event(LeakS(phaseB, bob))) &&
(event(LeakPsk(phase@, alice, bob))));

27

Veritpal: New Protocol
Analysis Software

1. An intuitive language for modeling
protocols.

2. Modeling that avoids user error.

3. Analysis output that’s easy to
understand.

4. IDE integration (Visual Studio
Code), translations to ProVerif and
Coq.

A New Approach to Symbolic Verification

@er—foeused approach... \ ...without losing strength
« An intuitive language for modeling Can reason about advanced protocols (eg.
protocols. Signal, DP-3T) out of the box.
« Modeling that avoids user error. « Can analyze for forward secrecy, key

compromise impersonation and other

 Analysis output that’s easy to ,
advanced queries.

understand.
« Unbounded sessions, fresh values, and

« Integration with developer workflow. ,
other cool symbolic model features.

\ J

29

[_.imitations and Context

« Does not produce proofs (like CryptoVerif)

o Is not formally proven to not miss attacks (like ProVerif)

Working towards obtaining higher confidence through building relationship to
Coq models of verification method, more scrutiny, more protocols analyzed...

Usefulness is more towards engineers and students.

Verifpal Language: Simple and Intuitive

Simple Protocol

attacker[active] Alice Bob
principal Bob[] |
principal Alicel[generates a
generates a ga = G"a
ga = G”a
a
] g >

Alice— Bob: ga
principal Bobl[
knows private ml

knows private ml
generates b
gh = G™b

generates b el = AEAD_ENC(ga”™b, ml, gb)
gb = G*b
el = AEAD_ENC(ga”b, ml, gb) < gb, el
1
Bob— Alice: gb, el el dec = AEAD DEC(gh™a, el, gh)?
principal Alicel[|
el_dec = AEAD_DEC(gb”a, el, gb)? Alice Bob
]

Veriftpal Language: Hashing Primitives

Primitives are built-in.

Users cannot define their own primitives.

Feature, not bug: eliminate user error on the
primitive level.

Verifpal not targeting users interested in
their own primitives (use ProVerif or
Tamarin, they’re really quite excellent!)

Verifpal will never be “better” than ProVerif,
Tamarin, etc. — we are targeting a different
class of user entirely

SIGN(key, message): signature.
Classic signature primitive. Here, key is a private key, for example a.

SIGNVERIF(GAkey, message, SIGN(key, message)): message.

Verifies if signature can be authenticated.

If key a was used for SIGN, then SIGNVERIF will expect G*a as the key value. Output value
is not necessarilv nsed: see 8§2.3.2 helow for information an how to validate this check.

SHAMIR_SPLIT(K): sl1, s2, s3.
In Verifpal, we allow splitting the key into three shares such that only two shares are
required to reconstitute it.

SHAMIR_JOIN(sa, sb): k.
Here, sa and sb must be two distinct elements out of the set (s1, s2, s3) in order to
obtain k.

RINGSIGNVERIF(G”a, GAb, GAc, m, RINGSIGN(a, G”b, GAc, m)): m.

Verifies if a ring signature can be authenticated.

The signer’s public key must match one or more of the public keys provided, but the
public keys may be provided in any order and not necessarily in the order used during the
RINGSIGN operation. Output value is not necessarily used; see §2.3.2 below for information
on how to validate this check.

BLIND(k, m): m.

Message blinding primitive, useful for the implementation of blind signatures. Here, the
sender uses the secret “blinding factor” k in order to blind message m, which can then be
sent to the signer, who will be able to produce a signature on m without knowing m. Used
in conjunction with UNBLIND — see UNBLIND’s documentation for more information.

32

Guarded Constants, Checked Primitives

 This challenge-response protocol 1s
broken:

« Attacker can man-in-the-middle gs.

 Client will send valid even if
signature verification fails.

« Adding brackets around gs “guards” it
against replacement by the active attacker.

« Adding a question mark after SIGNVERIF
makes the model abort execution if it fails.

Challenge-Response Protocol

attacker[active]
principal Server [
knows private s
gs = G”s
1
principal Client[
knows private c
gc = G”c
generates nonce
]
Client— Server: nonce
principal Server[
proof = SIGN(s, nonce)
1
Server— Client:| gs|, proof
principal Client[
valid = SIGNVERIF(gs, nonce, proof)
generates attestation
signed = SIGN(c, attestation)
1
Client— Server: [gc], attestation, signed
principal Server[
storage = SIGNVERIF(gc, attestation, signed)?
1
queries|[
authentication? Server— Client: proof
auvthentication? Client— Server: signed

1

33

Constant y O
| Knowl M
8 Fresh, KnownBy, Guard, Leaked, Parse g:‘;:glg;alsap Mutate
Q. Declaration, Qualifier — | . Const — Value PrincipalState
) « Creator for Next Run
- || [Primitive y) EﬂownBy
] . ase.. Ga =
g Na‘me.r,' Arguments, Check, glattacker
,c—qc [PrimitiveSpec = gb..
> Equation
Values, rules (ghe=g) ga, el
—
e ™ [gb], e2
RecomposeRule -—
DecomposeRule Recompose(a,b)
Decompose(ENC(k, X & a,b,_ <
m),k) = m SHAMIR _SPLIT(x)
I | \ |]
AN
(Rewrlte(Rule . Rebuﬂde(lle | Resolve Deconstmw, 4 \i{_eiconstruct Equivalize
DEC(k,ENC(k, m SHAMIR_JOIN(a,b _ oA “Kom - A L oA
>m > X © a,b,_ = §a = ¢3a DEC(km)'/(_' " MAC(X, m) ga’b = gb"a
- SHAMIR_SPLITCO) =) | oL

Queries Analysis Translate to Coq

Protocol Modeling and
Verification

*Work with Coq Library to perform more

*Check for contradiction to queries after . \
each run in-depth analysis

e|terative process through intuitive
modeling and optional further Coq

*Terminate when no new values are being sosloline

learned

Veritpal: Advanced Features

« Protocol phases for temporal logic « Password values that are “crackable”
(forward secrecy, post-compromise unless first hashed using a password-
security). hashing function.

o Leaking values to the attacker (without « Query preconditions: check if a query is
necessarily sending a message). satisfied if and only if another query 1s

. Unlinkability queries, freshness queries. satisfied also.

Verifpal for Visual Studio Code

« Syntax highlighting, model formatting,
code completion.

 Protocol diagrams, update live with your
model,

o Insight on hover: show more
information about values, queries, etc.

« Live analysis within Visual Studio

Code!

36

Verifpal Translations: Coq and ProVerit

« Verifpal models can be translated to
Coq models (complete with formal
semantics, lemmas and proofs on
primitives),

« ProVerif model templates for further
analysis in ProVerif and potentially
CryptoVerlf

lllllllllllllllllllllllll (Partial)
Coq: Verifpal Diffie-Hellman Semantic

Theorem dh_ commutativ yyyyyyyyyyyy
oooooo

rewrite < mult_commute. reflexivity.

Listing 1.1. ProVerif Attack Trace

Easier to Read Analysis Output

Listing 1.2. Verifpal Attack Trace

new skB: skey creating skB_2 at {1}

out(c, ~M) with ~M = pk(skB_2) at {3}

new nl_1: nonce creating n1_2 at {9} in copy a

new n2_1: nonce creating n2_2 at {10} in copy a

out(c, (~M_1,~M_2)) with ~M_1 = n1_2, ~M_2 = n2_2 at
{11} in copy a

new nl_1: nonce creating n1_3 at {9} in copy a_1

new n2_1: nonce creating n2_3 at {10} in copy a_1

out(c, (~M_3,~M_4)) with ~M_3 = n1_3, ~M_4 = n2_3 at
{11} in copy a_1

in(c, (~M_3,~M_1)) with ~M_3 = n1_3, ~M_1 = n1_2 at {5}

in copy a_2

out(c, ~M_5) with ~M_5 = encrypt((n1_3,n1_2,M),pk(skB_2
)) at {6} in copy a_2

in(c, ~M_5) with ~M_5 = encrypt((n1_3,n1_2,M),pk(skB_2)
) at {12} in copy a_1

out(c, (~M_6,~M_7)) with ~M_6 = n1_2, ~M_7 = encrypt((
n1_2,M,n1_3),pk(skB_2)) at {14} in copy a_1

in(c, ~M_7) with ~M_7 = encrypt((n1_2,M,n1_3),pk(skB_2)
) at {12} in copy a

out(c, (~M_8,~M_9)) with ~M_8 = M, ~M_9 = encrypt((M,
n1_3,n1_2),pk(skB_2)) at {14} in copy a

The attacker has the message ~M_8 = M.

Result + confidentiality? m — When:

nl 2 nil ¢ mutated by Attacker (was n1l1)

n2 > nil ¢ mutated by Attacker (was n2)

msg > PKE_ENC(G~skb, CONCAT(nil, n1, m))

clear & CONCAT(nil, n1, m)

X > nil

yl > nl

y2 > m

unnamed_0 > ASSERT(nil, n1)?

msg2 > PKE_ENC(G~skb, CONCAT(nl, m, nl)) ¢
obtained by Attacker

m is obtained:

msg > PKE_ENC(G”skb, CONCAT(n1, m, nl)) ¢
mutated by Attacker

(was PKE_ENC(pkb, CONCAT(n1, n2, m)))

clear > CONCAT(n1, m, nl)

X > nl

vyl > m ¢ obtained by Attacker

y2 > nl

unnamed_0 2 ASSERT(n1, n1)?

msg2 > PKE_ENC(G~skb, CONCAT(m, nl1, n1))

m (m) is obtained by Attacker.

38

Protocols Analyzed with Verifpal

Signal secure messaging protocol.
Scuttlebutt decentralized protocol.
ProtonMail encrypted email service.
Telegram secure messaging protocol.

DP-3T contact tracing protocol.

[N J fish /Users/nadim/Documents/git/verifpal

it, nil), nil), nil), nil, nil)
d > AEAD_DEC(HKDF(MAC (HKDF (G"ae2”bs, HKDF(HASH(G”alongterm”bs, G”“ael”blongterm, G“ael”bs, G’ael
Abo), nil, nil), nil), nil), nil, nil), AEAD_ENC(HKDF(MAC(HKDF(6”nil”ae2, HKDF(HASH(G”nil”alongterm, G”nil’ael
, 6”nil”*ael, G"nil’ael nil, nil), nil), nil), nil, nil), m1, HASH(G”alongterm, 6*nil, G"ae2)), HASH(G”alongt
erm, G*blongterm, G"ae2))
ml (m1) is obtained by Attacker.

« authentication? Alice — Bob: el - When:
gblongterm » 67nil
gbs > 67nil
gho > G”nil
ghssig > SIGN(blongterm, G"bs)

nil is obtained

galongterm - il

gbssig > SIGN(blongterm, G”bs)

gael > 67nil

amaster > HASH(G”bs”alongterm, G”blongterm”ael, G"bs”ael, G"bo’ael)

arkbal > HKDF(HASH(G”bs”alongterm, G”blongterm”ael, G*bs”ael, G"bo“ael), nil, nil)

ackbal > HKDF(HASH(G”bs“alongterm, G”blongterm”ael, G”bs”ael, G"bo“ael), nil, nil)

gae2 > 6”nil

valid 5 nil

aksharedl > G"bs”ae2

arkabl > HKDF(G"bs”ae2, HKDF(HASH(G"bs”alongterm, G“blongterm”ael, G"bs”ael, G”bo”ael), nil, nil),
nit)

ackabl > HKDF(G"bs”ae2, HKDF(HASH(G"bs”alongterm, G“blongterm”ael, G”bs”ael, G”bo”ael), nil, nil),
nit)

akencl > HKDF(MAC(HKDF (G"bs”ae2, HKDF(HASH(G"bs”alongterm, G*blongterm”ael, G"bs”ael, G”bo”ael), n
il, nil), nil), nil), nil, nil)

akenc2 > HKDF (MAC(HKDF (6"bs”ae2, HKDF(HASH(G"bs”alongterm, G”blongterm”ael, G"bs”ael, G”bo”ael), n
il, nil), nil), nil), nil, nil)

el > AEAD_ENC (HKDF (MAC (HKDF(6”nil”bs, HKDF(HASH(G"nil” G”nil”blongterm, 6”nil”bs, G”nil”bo), ni
1, nil), nil), nil), nil, nil), nil, HASH(6”nil, G”blongterm, 6"nil))

bmaster > HASH(G"nil”bs, G”nil”blongterm, 6*nil”bs, G”nil”bo)

brkbal > HKDF(HASH(6”nil”bs, G”nil”blongterm, G”nil”bs, G6”nil”bo), nil, nil)

bckbal > HKDF(HASH(G”nil”bs, G”nil”blongterm, G”nil”bs, 6”nil”bo), nil, nil)

bksharedl 5 6”nil”bs

brkabl > HKDF(6”nil”bs, HKDF(HASH(G”nil”bs, G”nil”blongterm, 6*nil”bs, G”nil”bo), nil, nil), nil)

bckabl > HKDF(6*nil”bs, HKDF(HASH(G”nil”bs, G”nil”blongterm, 6*nil”bs, G”nil”bo), nil, nil), nil)

bkencl > HKDF(MAC(HKDF(G”nil”bs, HKDF(HASH(G”nil”bs, G”nil”blongterm, G”nil”bs, G”nil”bo), nil, ni
1), nil), nil), nil, nil)

bkenc2 > HKDF(MAC(HKDF(67nil”bs, HKDF(HASH(6”nil”bs, G”nil”blongterm, 6”nil”bs, G6”nil”bo), nil, ni

nil), nil), nil, nil)

mi_d > nil

el (AEAD_ENC(HKDF(MAC(HKDF(6”nil”bs, HKDF(HASH(6”nil”bs, G”nil”blongterm, 6”nil”bs, 6”nil”bo), nil
, nil), nil), nil), nil, nil), nil, HASH(G*nil, G”blongterm, G”nil))), sent by Attacker and not by Alice, is s
uvccessfully used in AEAD_DEC (HKDF (MAC (HKDF (6”nil”bs, HKDF(HASH(6”nil”bs, G”nil“blongterm, G*nil”bs, G”nil”bo),
nil, nil), nil), nil), nil, nil), AEAD_ENC(HKDF (MAC(HKDF(G*nil”bs, HKDF(HASH(G”nil”bs, G”nil”blongterm, 6”nil
Abs, 6”nil”bo), nil, nil), nil), nil), nil, nil), nil, HASH(6”nil, G”blongterm, G6”nil)), HASH(6”nil, G”blongte
rm, 6%nil)) within Bob's state.

Verifpal - Thank you for using Verifpal.

05:47:03 PM

39

Who's Using Veritpal?

ASSA ABLOY
Quarkslat

EEEEEEEEEEEEEEEEEEEEEEEEEE

”
-3

Z00Mm

Verifpal

Veritpal: a learning
tool with an important
mission

ProVerif, CryptoVerif, F*, probably
Tamarin...

« Verifpal does aim to give accurate, insightful results, but its queries are quite
general, and the guarantees it gives are much weaker and less precise than
ProVerif, Tamarin, CryptoVerif, etc. etc.

« On the other hand, Verifpal is much easier to learn, to sketch protocols with, and
(especially with the Visual Studio Code extension) to use as an “intelligent
notebook™ for studying protocol designs, with support for some advanced features.

41

ALICE'S EPHEMERAL KEY...
IT’S THE ONLY THING
KEEPING HER MESSAGES
SAFELY ENCRYPTED...

50...
THIS IS SUPPOSED

USING TO
COMMUNICATE...

I'M SURE I'VE,
MODOELED IT
CORRECTLY...

"8UT
SOMETHING'S
NOT RIGHT.."

1S CHAINED
DOWN PAST

THE KE!
EXCHANGE

15—

BUT

PROVERIF-SAMA/!
THE LONG-TERM
KEYS HAVE MUWAL

Veritpal in the
Classroom

CHAPTER 2. THE VERIFPAL LANGUAGE 17

Example Equations

principal Server[
generates x
generates y
gx = 67
9y = 6%y
gxy = gx"y
ayx = gy"x

In the above, gxy and gyx are considered equivalent by Verifpal. In Verifpal,
all equations must have the constant G as their root generator. This mirrors
Diffie-Hellman behavior. Furthermore, all equations can only have two
constants (a*b), but as we can see above, equations can be built on top of
other equations (as in the case of gxy and gyx).

2.6 MESSAGES

Sending messages over the network is simple. Only constants may be sent
within messages:

Example: Messages

Alice -> Bob: ga, el
Bob -> Alice: [gb], e2

Let’s look at the two messages above. In the first, Alice is the sender and Bob
is the recipient. Notice how Alice is sending Bob her long-term public key
ga = G"a. An active attacker could intercept ga and replace it with a value
that they control. But what if we want to model our protocol such that Alice
has pre-authenticated? Bob’s public key gb = 6~b? This is where guarded
constants become useful.

2“Pre-authentication " refers to Alice confirming the value of Bob's public key before
the protocol session begins. This helps avoid having an active attacker trick Alice to use a
fake public key for Bob. This fake public key could instead be the attacker’s own public key.

18 Verifpal User Manual

Guarding the Right Constants
Verifpal allows you to guard constants against modi-
fication by the active attacker. However, guarding all of a

3 //1 principal’s public keys, for example, might not reflect real-
b world attack scenarios, where keys are rarely guarded from
.U\ being modified as they cross the network.

TR What interesting new insights will you discover using
o e guarded constants?

In the second message from the above example, we see that, gb is surrounded
by brackets ([1). This makes it a “guarded” constant, meaning that while an
active attacker can still read it, they cannot tamper with it. In that sense it is

“guarded” against the active attacker.

2.7 QUERIES

A Verifpal model is always concluded with a queries block, which contains
essentially the questions that we will ask Verifpal to answer for us as a result
of the model’s analysis. Queries have an important role to play in a Verifpal
model’s constitution. The Verifpal language makes them very simple to
describe, but you may benefit from learning more on how to properly use
them in your models. For more information on queries, see §3. §2.8 below
shows a quick example of how to illustrate queries in your model.

2.8 A SIMPLE COMPLETE EXAMPLE

Figure 2.1 provides a full model of a naive protocol where Alice and Bob only
ever exchange unauthenticated public keys (6*a and 6*b). Bob then proceeds
to send an encrypted message to Alice using the derived Diffie-Hellman
shared secret to encrypt the message. We then want to ask Verifpal three
questions:

‘We call this a Mayor-in-the-Middle attack.

« Verifpal User Manual: easiest way to learn how to model and analyze
protocols on the planet. Comes with 3 example protocol models!

« NYU test run: huge success. 20-year-old American undergraduates with
no background whatsoever in security were modeling protocols in the first
two weeks of class and understanding security goals/analysis results.

42

Verifpal practical learning session

 Please download and open the Verifpal
User Manual:

https://verifpal.com/res/pdf/manual.pdf

We will now do a two-hour practical

session with Verifpal, in which we will =

progress to cover advanced protocols (like

Signal) with interesting security properties
(like forward secrecy).

43

https://verifpal.com/res/pdf/manual.pdf

Part 2: Other Analysis Frameworks

o ProVerif

« Symbolic model automated protocol
analysis and verification

« Tamarin

« Symbolic model semi-automated
protocol analysis and verification

« CryptoVerif

« Computational model protocol
modeling and semi-automated
game-based proof assistant

o F*

« Programming language that links
Ocaml-like language to Z3 SMT
solver so that types are proofs

ProVerit

“Cryptographic protocol verifier in the formal model”

. Time for another practical session

« We’ll take a look at some example
models together.

o We’ll discuss how ProVerif works:
« Horn clauses,

« Communicating sequential
processess (CSP)...

type passwd.
type nonce.

fun encrypt(nonce, passwd): nonce.
fun decrypt(nonce, passwd): nonce.

equation forall x: nonce, y: passwd;
equation forall x: nonce, y: passwd;

fun dincr(nonce): nonce.

free c: channel.
free pw: passwd [private].
weaksecret pw.

let processA =
new N: nonce;
out(c, encrypt(N, pw)).

let processB =
in(c, x: nonce);
let n = decrypt(x, pw) 1in
out(c, encrypt(incr(n), pw)).

process
(!processA) | (!processB)

decrypt(encrypt(x,y),y
encrypt(decrypt(x,y),y

)
)

X.
X

45

CryptoVerif: quick interactive session

« Materials based on the CryptoVerif tutorial, by Bruno Blanchet and Benjamin Lipp:

« https://bblanche.gitlabpages.inria.fr/Crypto Verif/tutorial/

46

https://bblanche.gitlabpages.inria.fr/CryptoVerif/tutorial/

Conclusion Slide

Thank you for attending!

Verifpal is released as free and open source software, under version
3 of the GPL.

Check out Verifpal today: | (\ Protocol Builder's N
verifpal.com -

4
4

Warkbench

47

