
A friendly introduction to formal methods
for real-world cryptographic protocols

Nadim Kobeissi, Georgio Nicolas

Eurocrypt 2022 — May 29th, 2022

Verifpal

Workshop Expectations

This workshop is for beginners

• You will benefit if:

• You are new to formal modeling of
cryptographic protocols

• You are new to the “tool-assisted”,
“automated analysis” of cryptographic
protocols

• You are new to cryptographic protocols,
period

2

This workshop will greatly bore
non-beginners

• You will fall asleep here if:

• You’re well-versed in ProVerif,
CryptoVerif, Tamarin…

• You have strong familiarity with
modeling and breaking security protocols

• If the above is you, consider attending
another Eurocrypt 2022 workshop today,
for your own sake.

Seriously, there are other events

3

Potentially

less boring

Wow

Actual

Experts

Institutional
affiliations

Probably

smarte
r

th
an me

Workshop Overview

Automated Verification Safari

• A Look at ProVerif

• Coffee Break

• A Look at CryptoVerif and a very brief
discussion of F*

• Q&A, Discussion

Intro to Protocols & Verifpal

• Introduction and Software Setup

• Learning Verifpal with Examples

• Coffee Break

• Modeling Signal in Verifpal

• Lunch Break

4

Data Security

• Deploying software in the real world requires
solutions that alleviate actual security risks

• It is equally important to:

1. Define our problem

2. Attempt a solution

3. Assess whether the solution actually

reduces the risk to an acceptable amount

• While this may look nice and simple from a
distance, most security breaches are a result
of failing at steps 1 and 3

5

Our Scope
• Data can be:

• At Rest (stored on a disk)

• In Use (input for a computation)

• In Transit (transferred over a channel)

• We will be focusing on Data In Transit

6

At Rest

In Transit

In Use

What are cryptographic protocols?

7

• More specifically, “secure channel protocols”.

• We use them to communicate and do things!

• When you send a message over Signal/
WhatsApp…

• When you open a website over HTTPS…

• When you pay for a dinner using your
debit card…

Secure Channel Protocol Design Ingredients

• Principals

• Set of communication channels
between principals

• Initial state for each party

• Protocol:

• Update state,

• Perform computations,

• Send/receive messages over
communication channels…

8

What Makes Up a Protocol?

• Symmetric primitives:

• AES for encryption,

• SHA-2 for hashing…

• Asymmetric primitives:

• RSA for asymmetric encryption,

• Diffie-Hellman (ECDH, etc.) for
key agreement,

• DSA, ECDSA, etc. for public key
signatures…

9

• Principals:

• One or more parties involved in the
execution of an instance of a
protocol

• Messages:

• Sent across a network or out-of-
band

• Formalizations: “Dolev-Yao model”

Reasoning About Cryptographic Protocols

• What is our goal?

• Authentication (between parties), confidentiality, non-repudiation…

• How will we achieve the goal(s)?

• Using cryptographic protocols (which in turn employ primitives like encryption,
signing, hashing…)

• Who are we protecting ourselves against?

• A disgruntled employee, the government, an ex-partner, a dead person, any
attacker in the middle between two nodes on the internet, all of them at once…

• What can the attacker do (use your imagination)

10

Security Properties Provided by Protocols

• Secrecy

• If A sends some secret message M to B, then nobody except A and B can obtain M.

• Indistinguishability

• If A randomly chooses between two messages M0, M1 (of the same size) and sends one of
them to B, the attacker cannot distinguish (within the constraints of the cryptographic
model) which message was sent.

• Forward Secrecy

• If A sends a secret message M to B and if A and B’s long-term secrets are subsequently
compromised, the message M remains secret.

• Future Secrecy

• Suppose A sends M in a session state T, then receives N, then sends M0 . If the session state
T is subsequently compromised, the message M0 remains secret.

11

Alleged Security vs Provable Security

• Protocol design on pen and paper can be easy.

• Proving that a protocol can guarantee security properties given a specific use case is
much harder.

Are we sure that a protocol does what it claims on the tin?

12

What can go wrong in this scenario?

13

• A remote key fob and a car
paired by being
programmed with the same
random static secret.

• The car decrypts and
executes commands
transmitted in ciphertext by
the key fob.

Unoriginal-Rice-Patty (CVE-2019-20626)

14

• A hacker can gain complete and unlimited access to
locking, unlocking, controlling the windows, opening
the trunk, and starting the engine of the target vehicle.

• The only way to prevent the attack is to either never
use the remote fob or, reset the programmed key after
being compromised at the dealership (which would be
difficult to realise).

• Vehicles as new as a 2020 Honda Civic are
vulnerable.

• A rolling-code based protocol is more secure.

Modelling our Assumptions Correctly

• The results of a formal methods tool are as strong as the assumptions we provide it
with.

• If we model the attacker to have less capabilities than expected in real life, then we
could miss certain classes of attacks.

• For the previous example, the attacker never got their hands on the secret key, yet
they were still able to unlock the car. An attacker able to replay messages was not
considered in the threat model.

• The security of the cryptographic primitives employed play an equally important
role: base64 encryption can be broken without a key because it doesn’t use one,
RSA-2048 can be broken with a quantum computer…

15

16

Noise XX Protocol

• Protocol between 2 parties

• The communication channel satisfies
different security properties at before,
after, and during each stage of the
protocol’s execution

What are formal methods?

• Allows us to:

• Define our systems using a “Mathematical Framework”

• Reason about our definitions in said framework using the
provided rules to define certain properties and check if our
definitions comply with our targeted properties

• Model at different layers of abstractions

• Trace back our decisions

• Can be employed at different stages of development

• Certain frameworks give us special superpowers (HoTT: programs
are proofs)

• Can leverage the power of computers: “Theorem Provers”, “SAT-
Solvers”, “Static Analysis”, “Verified Compilers”…

17

Why are formal methods important?

• Since we can verify properties in general using formal methods, why not verify security
properties of our crypto constructions!

• We are required to provide some definitions before obtaining results:

• Primitive choice (Perfect Hash Function vs MD-2 vs SHA-3, Ideal MPC vs BGW,
Perfect Encryption vs 2DES vs AES-256…)

• Adversary resources and capabilities (“Active”, Encryption + Decryption Oracle,
Honest but Curious, the NSA…)

• Properties (“Security”, Confidentiality, Binding, Forward Secrecy, IND-CCA,
Correctness…)

• The more intricate our models are, the more confidence we gain. However, we can still
obtain results using abstract models.

18

Protocol Security by Design

• Protocol designers can employ formal
methods at the design stage to verify that
their constructions are secure by design.

• While this process requires more time to
be invested modeling early on, it yields
more robust and trustworthy protocols at
deployment time.

• Formal Methods were employed during
the design process of TLS 1.3, which is
expected to have a much longer lifespan
than previous versions of TLS.

19

Limitations and discussion of automated
“proofs”

20

• Even if this gives you a “proof”, can
you trust it?

• Models too big to be accurately
assessed…

• Models too complex to be checkable
by others humans…

• Being verified by software which
could be buggy, etc.

• Is the term “proof” too strong?

Bugs in Protocol Implementations

• The people who design a protocol are not
always the ones who implement/deploy it
in the real world.

• Subtle bugs in protocol implementations
can compromise the security guarantees
provided by a protocol.
Can we ensure that our implementations
reflect our protocol design
considerations?

21

Real World Disasters:

• Psychic Signatures (Java)

• Solana/Whatever current crypto
exchange hack (millions of dollars)

• Libp2p not validating signatures (TS,
recent)

• Nonce reuse disasters

• TLS with same server key for all clients
as an optimisation

Complexity of Cryptographic Proofs

• Security proofs about primitives or
protocols can be hard to understand in
some cases, let alone reproduce and
verify.

Can we compose our proofs in a
modular and verifiable way such that the
readers would be able to replicate the
verification procedure on their own to
validate the claims of the authors?

22

Formal Verification Today

Protocols: ProVerif, Tamarin

• Take models of protocols (Signal, TLS)

and find contradictions to queries.

• Are limited to the “symbolic model”,
CryptoVerif works in the “computational
model”.

Code and Implementations: F*

• Exports type checks to the Z3 theorem
prover.

• Can produce provably functionally
correct implementations of primitives
(e.g. Curve25519 in HACLxN).

• Can produce provably functionally
correct protocol implementations
(Signal*).

23

Symbolic and Computational Models

Computational Model

• Primitives are nuanced (IND-CPA, IND-

CCA, etc.)

• Security bounds (2128, etc.)

• Human-assisted.

• Produces game-based proofs, similar
technique to hand proofs.

Symbolic Model

• Primitives are “perfect” black boxes.

• No algebraic or numeric values.

• Can be fully automated.

• Produces verification of no

contradictions (theorem assures no
missed attacks).

24

Symbolic Verification
Overview

• Main tools: ProVerif, Tamarin.

• User writes a model of a protocol in action:

• Signal AKE, bunch of messages between Alice and Bob,

• TLS 1.3 session between a server and a bunch of clients,

• ACME for Let’s Encrypt (with domain name ownership

confirmation…)

• User writes queries:

• “Can someone impersonate the server to the clients?”

• “Can a client hijack another client’s simultaneous

connection to the server?”

• ProVerif and Tamarin try to find contradictions.

25

SoK: Computer-Aided Cryptography

Manuel Barbosa and Gilles Barthe and Karthik Bhargavan and Bruno Blanchet and Cas

Cremers and Kevin Liao and Bryan Parno

Symbolic Verification, Still?

• Research in symbolic verification is still producing novel results:

• Prime, Order Please! Revisiting Small Subgroup and Invalid Curve Attacks on

Protocols using Diffie-Hellman – Cas Cremers and Dennis Jackson

• Seems Legit: Automated Analysis of Subtle Attacks on Protocols that Use Signatures –

Dennis Jackson, Cas Cremers, Katriel Cohn-Gordon and Ralf Sasse

• Many papers published in the past 4 years: symbolic verification proving
(and finding attacks) in Signal, TLS 1.3, Noise, Scuttlebutt, Bluetooth, 5G
and much more!

• This is a great way to work, allowing practitioners to reason better about

their protocols before/as they are implemented.

26

So why isn’t it
used more?!

Tamarin and ProVerif: Examples

rule Get_pk:

 [!Pk(A, pk)]

 -->

 [Out(pk)]

// Protocol

rule Init_1:

 [Fr(~ekI), !Ltk($I, ltkI)]

 -->

 [Init_1($I, $R, ~ekI)

 , Out(<$I, $R, 'g' ^ ~ekI, sign{'1', $I, $R,'g' ^ ~ekI }
ltkI>)]

rule Init_2:

 let Y = 'g' ^ z // think of this as a group element check

 in

 [Init_1($I, $R, ~ekI)

 , !Pk($R, pk(ltkR))

 , In(<$R, $I, Y, sign{'2', $R, $I, Y }ltkR>)

]

 --[SessionKey($I,$R, Y ^ ~ekI)

 , ExpR(z)

]->

 [InitiatorKey($I,$R, Y ^ ~ekI)]

letfun writeMessage_a(me:principal, them:principal,
hs:handshakestate, payload:bitstring, sid:sessionid) =

 let (ss:symmetricstate, s:keypair, e:keypair, rs:key,
re:key, psk:key, initiator:bool) = handshakestateunpack(hs) in

 let (ne:bitstring, ns:bitstring, ciphertext:bitstring) =
(empty, empty, empty) in

 let e = generate_keypair(key_e(me, them, sid)) in

 let ne = key2bit(getpublickey(e)) in

 let ss = mixHash(ss, ne) in

 let ss = mixKey(ss, getpublickey(e)) in

 let ss = mixKey(ss, dh(e, rs)) in

 let s = generate_keypair(key_s(me)) in

[…]

event(RecvMsg(bob, alice, stagepack_c(sid_b), m)) ==>
(event(SendMsg(alice, c, stagepack_c(sid_a), m))) ||
((event(LeakS(phase0, alice))) && (event(LeakPsk(phase0,
alice, bob)))) || ((event(LeakS(phase0, bob))) &&
(event(LeakPsk(phase0, alice, bob))));

27

ProVerif

Tamarin

Verifpal: New Protocol
Analysis Software

1. An intuitive language for modeling
protocols.

2. Modeling that avoids user error.

3. Analysis output that’s easy to

understand.

4. IDE integration (Visual Studio

Code), translations to ProVerif and
Coq.

28

A New Approach to Symbolic Verification

…without losing strength

• Can reason about advanced protocols (eg.

Signal, DP-3T) out of the box.

• Can analyze for forward secrecy, key
compromise impersonation and other
advanced queries.

• Unbounded sessions, fresh values, and
other cool symbolic model features.

User-focused approach…

• An intuitive language for modeling
protocols.

• Modeling that avoids user error.

• Analysis output that’s easy to

understand.

• Integration with developer workflow.

29

Limitations and Context

• Does not produce proofs (like CryptoVerif)

• Is not formally proven to not miss attacks (like ProVerif)

Working towards obtaining higher confidence through building relationship to
Coq models of verification method, more scrutiny, more protocols analyzed…

Usefulness is more towards engineers and students.

30

Verifpal Language: Simple and Intuitive

31

Verifpal Language: Hashing Primitives

• Primitives are built-in.

• Users cannot define their own primitives.

• Feature, not bug: eliminate user error on the

primitive level.

• Verifpal not targeting users interested in

their own primitives (use ProVerif or
Tamarin, they’re really quite excellent!)

Verifpal will never be “better” than ProVerif,
Tamarin, etc. — we are targeting a different
class of user entirely

32

Guarded Constants, Checked Primitives

33

• This challenge-response protocol is
broken:

• Attacker can man-in-the-middle gs.

• Client will send valid even if

signature verification fails.

• Adding brackets around gs “guards” it
against replacement by the active attacker.

• Adding a question mark after SIGNVERIF
makes the model abort execution if it fails.

[]

?

V
al

u
e

T
y
p
es

Constant

Fresh, KnownBy, Guard, Leaked,
Declaration, Qualifier

Primitive

Name, Arguments, Check,
PrimitiveSpec

Equation

Values, rules (gba = gab)

Resolve

ga = g^a

g^a

Deconstruct

DEC(k,m), k ➞ m

m

Reconstruct

k, m ➞
MAC(k,m)

MAC(k, m)

Equivalize

ga^b = gb^a

Learned Value

Model

DecomposeRule

Decompose(ENC(k,
m),k) = m

RecomposeRule

Recompose(a,b) =
x ⇔ a,b,_ ←
SHAMIR_SPLIT(x)

RewriteRule

DEC(k,ENC(k, m))
→ m

RebuildRule

SHAMIR_JOIN(a,b)
→ x ⇔ a,b,_ =
SHAMIR_SPLIT(x)

PrimitiveSpec

KnowledgeMap
• Principals
• Const ➞ Value
• Creator
• KnownBy
• Phase…

Alice’s PrincipalState
• Const ➞ Value
• Guard
• KnownBy
• Wire…

Bob’s PrincipalState
• Const ➞ Value
• Guard
• KnownBy
• Wire…

ga, e1

[gb], e2

Parse

AttackerState

Mutate
PrincipalState
for Next Run

Ga =
g^attacker
Gb = gb…

Queries Analysis

•Check for contradiction to queries after
each run

•Terminate when no new values are being

learned

Translate to Coq
•Work with Coq Library to perform more
in-depth analysis

Protocol Modeling and
Verification
•Iterative process through intuitive
modeling and optional further Coq
modeling

34

Verifpal: Advanced Features

• Protocol phases for temporal logic
(forward secrecy, post-compromise
security).

• Leaking values to the attacker (without
necessarily sending a message).

• Unlinkability queries, freshness queries.

35

• Password values that are “crackable”
unless first hashed using a password-
hashing function.

• Query preconditions: check if a query is
satisfied if and only if another query is
satisfied also.

36

Verifpal for Visual Studio Code

• Syntax highlighting, model formatting,
code completion.

• Protocol diagrams, update live with your
model,

• Insight on hover: show more
information about values, queries, etc.

• Live analysis within Visual Studio
Code!

Verifpal Translations: Coq and ProVerif

• Verifpal models can be translated to
Coq models (complete with formal
semantics, lemmas and proofs on
primitives),

• ProVerif model templates for further
analysis in ProVerif and potentially
CryptoVerif.

37

Easier to Read Analysis Output

38

Protocols Analyzed with Verifpal

• Signal secure messaging protocol.

• Scuttlebutt decentralized protocol.

• ProtonMail encrypted email service.

• Telegram secure messaging protocol.

• DP-3T contact tracing protocol.

39

40

Who’s Using Verifpal?

V

Verifpal: a learning
tool with an important
mission

• Verifpal does aim to give accurate, insightful results, but its queries are quite
general, and the guarantees it gives are much weaker and less precise than
ProVerif, Tamarin, CryptoVerif, etc. etc.

• On the other hand, Verifpal is much easier to learn, to sketch protocols with, and
(especially with the Visual Studio Code extension) to use as an “intelligent
notebook” for studying protocol designs, with support for some advanced features.

41

Verifpal ProVerif, CryptoVerif,

Tamarin…

F*, probably

Verifpal in the
Classroom

• Verifpal User Manual: easiest way to learn how to model and analyze
protocols on the planet. Comes with 3 example protocol models!

• NYU test run: huge success. 20-year-old American undergraduates with
no background whatsoever in security were modeling protocols in the first
two weeks of class and understanding security goals/analysis results.

42

43

Verifpal practical learning session

• Please download and open the Verifpal
User Manual:

 https://verifpal.com/res/pdf/manual.pdf

We will now do a two-hour practical
session with Verifpal, in which we will
progress to cover advanced protocols (like
Signal) with interesting security properties
(like forward secrecy).

https://verifpal.com/res/pdf/manual.pdf

Part 2: Other Analysis Frameworks

• ProVerif

• Symbolic model automated protocol
analysis and verification

• Tamarin

• Symbolic model semi-automated
protocol analysis and verification

44

• CryptoVerif

• Computational model protocol
modeling and semi-automated
game-based proof assistant

• F*

• Programming language that links
Ocaml-like language to Z3 SMT
solver so that types are proofs

ProVerif

“Cryptographic protocol verifier in the formal model”
• Time for another practical session

• We’ll take a look at some example
models together.

• We’ll discuss how ProVerif works:

• Horn clauses,

• Communicating sequential
processess (CSP)…

45

CryptoVerif: quick interactive session

• Materials based on the CryptoVerif tutorial, by Bruno Blanchet and Benjamin Lipp:

• https://bblanche.gitlabpages.inria.fr/CryptoVerif/tutorial/

46

https://bblanche.gitlabpages.inria.fr/CryptoVerif/tutorial/

Conclusion Slide

Verifpal is released as free and open source software, under version
3 of the GPL.

Check out Verifpal today:

verifpal.com

47

Thank you for attending!

