
A Cryptographic Protocol
Modeling and Verification
Framework Written in Go

Nadim Kobeissi

Go Devroom, FOSDEM2020

Verifpal

What is Formal Verification?

• Using software tools in order to obtain guarantees on the security of

cryptographic components.

• Protocols have unintended behaviors when confronted with an active

attacker: formal verification can prove security under certain active attacker

scenarios!

• Primitives can act in unexpected ways given certain inputs: formal

verification: formal verification can prove functional correctness of

implementations!

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
1

Formal Verification Today

Protocols: ProVerif, Tamarin

• Take models of protocols (Signal, TLS)

and find contradictions to queries.

• “Can the attacker decrypt Alice’s first

message to Bob?”

• Are limited to the “symbolic model”,

CryptoVerif works in the

“computational model”.

Code and Implementations: F*

• Exports type checks to the Z3 theorem

prover.

• Can produce provably functionally

correct software implementations of

primitives (e.g. Curve25519 in

HACL*).

• Can produce provably functionally

correct protocol implementations

(Signal*).

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
2

Symbolic Verification Overview

• Main tools: ProVerif, Tamarin.

• User writes a model of a protocol in action:

• Signal AKE, bunch of messages between Alice and Bob,

• TLS 1.3 session between a server and a bunch of clients,

• ACME for Let’s Encrypt (with domain name ownership confirmation…)

• User writes queries:

• “Can someone impersonate the server to the clients?”

• “Can a client hijack another client’s simultaneous connection to the server?”

• ProVerif and Tamarin try to find contradictions.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
3

Symbolic Verification is Wonderful

• Many papers published in the past 4 years: symbolic verification proving

(and finding attacks) in Signal, TLS 1.3, Noise, Scuttlebutt, Bluetooth, 5G

and much more!

• This is a great way to work, allowing practitioners to reason better about

their protocols before/as they are implemented.

Why isn’t it used more?

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
4

Tamarin and ProVerif: Examples

rule Get_pk:
[!Pk(A, pk)]
-->

[Out(pk)]

// Protocol
rule Init_1:

[Fr(~ekI), !Ltk($I, ltkI)]

-->
[Init_1($I, $R, ~ekI)
, Out(<$I, $R, 'g' ^ ~ekI, sign{'1', $I, $R,'g' ^ ~ekI }ltkI>)]

rule Init_2:

let Y = 'g' ^ z // think of this as a group element check
in
[Init_1($I, $R, ~ekI)
, !Pk($R, pk(ltkR))
, In(<$R, $I, Y, sign{'2', $R, $I, Y }ltkR>)

]
--[SessionKey($I,$R, Y ^ ~ekI)

, ExpR(z)
]->
[InitiatorKey($I,$R, Y ^ ~ekI)]

letfun writeMessage_a(me:principal, them:principal,
hs:handshakestate, payload:bitstring, sid:sessionid) =

let (ss:symmetricstate, s:keypair, e:keypair, rs:key, re:key,
psk:key, initiator:bool) = handshakestateunpack(hs) in

let (ne:bitstring, ns:bitstring, ciphertext:bitstring) = (empty,
empty, empty) in

let e = generate_keypair(key_e(me, them, sid)) in

let ne = key2bit(getpublickey(e)) in
let ss = mixHash(ss, ne) in

let ss = mixKey(ss, getpublickey(e)) in
let ss = mixKey(ss, dh(e, rs)) in
let s = generate_keypair(key_s(me)) in

[…]

event(RecvMsg(bob, alice, stagepack_c(sid_b), m)) ==>
(event(SendMsg(alice, c, stagepack_c(sid_a), m))) ||

((event(LeakS(phase0, alice))) && (event(LeakPsk(phase0, alice,
bob)))) || ((event(LeakS(phase0, bob))) &&

(event(LeakPsk(phase0, alice, bob))));

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
5

ProVerif

Tamarin

(also not

fully

automated)

Verifpal: A New
Symbolic Verifier

1. An intuitive language for modeling
protocols (scientific contribution: a new

method for reasoning about protocols in the

symbolic model.)

2. Modeling that avoids user error.

3. Analysis output that’s easy to
understand.

4. Integration with developer
workflow.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
6

A New Approach to Symbolic Verification

…without losing strength

• Can reason about advanced protocols

(eg. Signal, Noise) out of the box.

• Can (soon) analyze for forward secrecy,

key compromise impersonation and

other advanced queries.

• Unbounded sessions, fresh values, and

other cool symbolic model features.

User-focused approach…

• An intuitive language for modeling

protocols.

• Modeling that avoids user error.

• Analysis output that’s easy to

understand.

• Integration with developer workflow.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
7

Verifpal Language: Simple and Intuitive

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
8

Protocols Analyzed with Verifpal

• Signal secure messaging protocol.

• Scuttlebutt decentralized protocol.

• ProtonMail encrypted email service.

• Telegram secure messaging protocol.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
9

Verifpal and Go

Go is awesome!

• Great performance.

• Fantastic concurrency for analysis.

• Simple and fun language.

• Super easy to publish binaries for all

mainstream desktops: Windows, Linux,

macOS, FreeBSD...

• Great tooling, debugging, ecosystem...

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
10

Verifpal: Go vs. Languages Usually Used

• ProVerif is written in OCaml.

• Tamarin is written in Haskell.

• OCaml and Haskell languages focus on:

• Functional programming.

• Being “correct” languages.

• Have existed for longer than Go.

• Verifpal in Go: more diverse ecosystem

of protocol analysis software!

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
11

Verifpal: Go vs. Languages Usually Used

Compared to Go:

• Much slower, worse concurrency, tiny

ecosystem, often outdated tooling... But

• Syntax and semantics are perfect for

describing ASTs, parsers, languages,

models, etc.

• Especially the pattern matching syntax!

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
12

Pattern Matching in OCaml

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
13

let rec mem x list =
match list with
[] -> false

| hd::tl -> hd = x || mem x tl

Pattern Matching in OCaml

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
14

let rec mem x list =
match list with
[] -> false
| hd::_ when hd = x -> true
| _::tl -> mem x tl

Pattern Matching in Go 2.x?

It would be great to have pattern matching

in Go.

• Allows the language to be more

appropriate for a new slew of use cases.

• Feature already supported by not only

OCaml and Haskell but also Rust.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
15

Try Verifpal Today

Verifpal is released as free and open source
software, under version 3 of the GPL.

Check out Verifpal today:

verifpal.com

Support Verifpal development:

verifpal.com/donate

Verifpal: Cryptographic protocol analysis for students and engineers – Nadim Kobeissi 16

