Verifpal

Cryptographic protocol analysis for
the real world

A@i

Nadim Kobeissi
Quarkslab Paris — June 19, 2020




What 1s Formal Verification?

* Using software tools 1n order to obtain guarantees on the security of
cryptographic components.

* Protocols have unintended behaviors when confronted with an active
attacker: formal verification can prove security under certain active attacker
scenarios!

* Primitives can act in unexpected ways given certain inputs: formal
verification: formal verification can prove functional correctness of
implementations!



Formal Verification Today

Code and Implementations: F*

Exports type checks to the Z3 theorem
prover.

Can produce provably functionally
correct software implementations of
primitives (e.g. Curve25519 in
HACL¥).

Can produce provably functionally
correct protocol implementations
(Signal™).

Protocols: ProVerif, Tamarin

* Take models of protocols (Signal, TLS)
and find contradictions to queries.

* “Can the attacker decrypt Alice’s first
message to Bob?”

* Are limited to the “symbolic model”,
CryptoVerif works in the
“computational model”.



Symbolic and Computational Models

Symbolic Model Computational Model

* Primitives are “perfect” black boxes. * Primitives are nuanced (IND-CPA,
IND-CCA, etc.)

« Security bounds (228, etc.)

* No algebraic or numeric values.

* Can be fully automated.

e * Human-assisted.
* Produces verification of no

contradictions (theorem assures no * Produces game-based proof, similar
missed attacks). technique to hand proofs.



Symbolic Verification
Overview

Main tools: ProVerif, Tamarin.

User writes a model of a protocol in action:
* Signal AKE, bunch of messages between Alice and Bob,
* TLS 1.3 session between a server and a bunch of clients,
* ACME for Let’s Encrypt (with domain name ownership
confirmation...)
User writes queries:
*  “Can someone impersonate the server to the clients?”
*  “Can a client hijack another client’s simultaneous
connection to the server?”

ProVerif and Tamarin try to find contradictions.

Tool

Unbound Eg-thy State

Trace

Equiv

Link

CPSA [17]
F7[18]
Maude-NPA [19]
ProVerif [20]
Scyther [21]
Tamarin [22]
DEEPSPEC [23]
VERIFPAL

e 000000

® O

SV NONVN

L M N NONONON N |

e 00000

O O

200000

® O

® OO0O0OO0O0



Symbolic Verification, Still?

* F* and computational models do not allow us to naturally express and
model protocols according to a system based on discrete principals with
internal states.

* Writing a protocol in F* just to check it against security goals on a network:
unreasonable cost/benefit tradeoft.

* Research in symbolic verification is still producing novel results:

* Prime, Order Please! Revisiting Small Subgroup and Invalid Curve Attacks on
Protocols using Diffie-Hellman — Cas Cremers and Dennis Jackson

* Seems Legit: Automated Analysis of Subtle Attacks on Protocols that Use Signatures
— Dennis Jackson, Cas Cremers, Katriel Cohn-Gordon and Ralf Sasse



Symbolic Veritication 1s Wondertul

* Many papers published 1n the past 4 years: symbolic verification proving
(and finding attacks) in Signal, TLS 1.3, Noise, Scuttlebutt, Bluetooth, 5G
and much more!

* This 1s a great way to work, allowing practitioners to reason better about
their protocols before/as they are implemented.

Why isn’t it used more?



Tamarin and ProVerif:

rule Get_pk:
[ !'Pk(A, pk) 1]
-=>

[ outlpi) ] Tamarin
// Protocol (also not
rule Init_1: fully

automated)

[ Fr(~eKkI),

-—>

[ Init_1( $I, $R, ~ekI )

, Out( <$I, $R, 'g' A ~ekI, sign{'1l', $I,
FLtkI> ) ]

ILtk($I, 1tkI) ]

$R,'g"' " ~ekI

rule Init_2:
let Y = 'g' ~ z // think of this as a group element check
in
[ Init_1( $I, $R, ~ekI )
, 'PK($R, pk(1tkR))
, In( <$R, $I, VY, sign{'2', $R, $I, Y }LtkR> )
]

--[ SessionKey($I,$R, Y A ~ekI)

, ExpR(2)
1->
[ InitiatorKey($I,$R, Y 2 ~ekI) ]

Examples

letfun writeMessage_a(me:principal, them:principal,
hs:handshakestate, payload:bitstring, sid:sessionid) =

let (ss:symmetricstate, s:keypair, e:keypair, rs:key,
re:key, psk:key, initiator:bool) =
handshakestateunpack(hs) in

let (ne:bitstring, ns:bitstring, ciphertext:bitstring)
= (empty, empty, empty) in

let e = generate_keypair(key_e(me, them, sid)) in

let ne = key2bit(getpublickey(e)) in
let ss = mixHash(ss, ne) in

let ss = mixKey(ss, getpublickey(e)) in
let ss = mixKey(ss, dh(e, rs)) in

let s = generate_keypair(key_s(me)) in

[..]

event(RecvMsg(bob, alice, stagepack_c(sid_b), m)) ==>
(event(SendMsg(alice, c, stagepack_c(sid_a), m))) ||
((event(LeakS(phase®, alice))) && (event(Leaszk(pha
alice, bob)))) || ((event(LeakS(phase®, bob))) &&

(event(LeakPsk(phase®, alice, bob))));



Veritpal: A New
Symbolic Verifier

1. An intuitive language for modeling

protocols (scientific contribution: a new
method for reasoning about protocols in the
symbolic model.)

2. Modeling that avoids user error.

3. Analysis output that’s easy to
understand.

4. IDE integration (Visual Studio Code),
translations to ProVerif and Coq.




A New Approach to Symbolic Verification

User-focused approach... ...without losing strength

* An intuitive language for modeling * Can reason about advanced protocols
protocols. (eg. Signal, DP-3T) out of the box.

* Modeling that avoids user error. * Can analyze for forward secrecy, key

compromise impersonation and other

* Analysis output that’s easy to ,
advanced queries.

understand.
 Unbounded sessions, fresh values, and

* Integration with developer workflow. ,
other cool symbolic model features.



Verifpal Language

* Explicit principals with discrete internal
states (Alice, Bob, Client, Server...)

* Reads like a protocol diagram.

* You don’t need to know the language to
understand it!

* Knows for private and public values.
* Generates for private fresh values.

* Assignments.

New Principal: Alice

principal Alice[
knows public c0, cl
knows private ml
generates a

1

New Principal: Bob

principal Bob[
knows public c@, cl
knows private m2
generates b
gb = G*b

1

10



Verifpal Language

* Explicit principals with discrete internal
states (Alice, Bob, Client, Server...)

* Reads like a protocol diagram.

* You don’t need to know the language to
understand it!

e (Constants are immutable.
* Global namespace.

* Constant cannot reference other constants.

New Principal: Alice

principal Alice[
knows public c0, cl
knows private ml
generates a

1

New Principal: Bob

principal Bob[
knows public c@, cl
knows private m2
generates b
gb = G*b

1

11



Verifpal Language: Hashing Primitives

* HASH(a, b...): x.
Secure hash function, similar in practice to, for example, BLAKEZ2s [10].
Takes between 1 and 5 inputs and returns one output.

* Unlike ProVerif, primitives are built-in.

* Users cannot define their own ek y: hash
. ey, message): hash.

primitives, Keyed hash function. Useful for message authentication and for some other protocol
constructions.

* Bug, not a feature: eliminate user error . wor(satt, ikn, info): a, b...

C el Hash-based key derivation function inspired by the Krawczyk HKDF scheme [11].
on the prlmlthe leVel. Essentially, HKDF is used to extract more than one key out a single secret value. salt and
info help contextualize derived keys. Produces between 1 and 5 outputs.

* Verifpal not targeting users interested in

* PW_HASH(a...): x.

their own primitives (use PrOVerif, 1'[’ S Password hashing function, similar in practice to, for example, Scrypt [12] or Argon2 [13].
Hashes passwords and produces output that is suitable for use as a private key, secret
gl‘eat!) key or other sensitive key material. Useful in conjunction with values declared using

knows password a.

12



Veritpal Language: Encryption Primitives

e ENC(key, plaintext): ciphertext.
Symmetric encryption, similar for example to AES-CBC or to ChaCha20.

° USerS CannOt define their OwWn e DEC(key, ENC(key, plaintext)): plaintext.

Symmetric decryption.

* Unlike ProVerif, primitives are built-in.

prlmltlves . e AEAD_ENC(key, plaintext, ad): ciphertext.
Authenticated encryption with associated data.
° B u g, not a fe ature: elimin ate user error fad represents an additic?nal payload th?lt is not encryPted, but that mus.t b.e provided exactly
in the decryption function for authenticated decryption to succeed. Similar for example to
on the prlmltlve level. AES-GCM or to ChaCha20-Poly1305.
. . . . e AEAD_DEC(key, AEAD_ENC(key, plaintext, ad), ad): plaintext.
° Verlfp al not targetlng users interested in Authenticated decryption with associated data.
) . . ., See §2.3.2 below for information on how to validate successfully authenticated decryption.
their own primitives (use ProVerif, it’s . .
* PKE_ENC(G"key, plaintext): ciphertext.
gre at' ) Public-key encryption.

e PKE_DEC(key, PKE_ENC(GAkey, plaintext)): plaintext.
Public-key decryption.

13



Veritpal Language: Signing Primitives

* Unlike ProVerif, primitives are built-in.

* Users cannot define their own
primitives.

* Bug, not a feature: eliminate user error

on the primitive level.

* Verifpal not targeting users interested in
their own primitives (use ProVerif, it’s
great!)

e SIGN(key, message): signature.

Classic signature primitive. Here, key is a private key, for example a.

SIGNVERIF(GAkey, message, SIGN(key, message)): message.

Verifies if signature can be authenticated.

If key a was used for SIGN, then SIGNVERIF will expect G/a as the key value. Output value
is not necessarily used; see §2.3.2 below for information on how to validate this check.

RINGSIGN(key_a, G"key_b, G"key_c, message): signature.

Ring signature.

In ring signatures, one of three parties (Alice, Bob and Charlie) signs a message. The
resulting signature can be verified using the public key of any of the three parties, and the
signature does not reveal the signatory, only that they are a member of the signing ring
(Alice, Bob or Charlie). The first key must be the private key of the actual signer, while
the subsequent two keys must be the public keys of the other potential signers.

RINGSIGNVERIF(G*a, G*b, G”c, m, RINGSIGN(a, G*b, G”c, m)): m.

Verifies if a ring signature can be authenticated.

The signer’s public key must match one or more of the public keys provided, but the
public keys may be provided in any order and not necessarily in the order used during the
RINGSIGN operation. Output value is not necessarily used; see §2.3.2 below for information
on how to validate this check.

BLIND(k, m): m.

Message blinding primitive, useful for the implementation of blind signatures. Here, the
sender uses the secret “blinding factor” k in order to blind message m, which can then be
sent to the signer, who will be able to produce a signature on m without knowing m. Used
in conjunction with UNBLIND — see UNBLIND’s documentation for more information.

14



Verifpal Language: Secret Sharing Primitives

* Unlike ProVerif, primitives are built-in.

* Users cannot define their own
primitives.

* Bug, not a feature: eliminate user error

on the primitive level.

* Verifpal not targeting users interested in
their own primitives (use ProVerif, it’s
great!)

SHAMIR_SPLIT(K): s1, s2, s3.
In Verifpal, we allow splitting the key into three shares such that only two shares are
required to reconstitute it.

SHAMIR_JOIN(sa, sb): k.
Here, sa and sb must be two distinct elements out of the set (s1, s2, s3) in order to
obtain k.



Verifpal Language: Equations

Example Equations

principal Server|
generates Xx
generates y
gx = G/x
gy = Gy
gxy gx”"y
gyx gy”~Xx



Verifpal Language: Messages and Queries

Example Unlinkability Query

Example: Messages attacker[active]
principal Alice[

generates b

1

Alice— Bob: b

principal Bob[
knows private a
generates c
generates d

Alice -> Bob: ga, el
Bob -> Alice: [gb], e2

leaks c
Example: Queries hi, h2, h3 = HKDF(a, b, nil)
h4, h5, hé = HKDF(c, ¢, nil)
queries| h7, h8, h9 = HKDF(a, c, d)
confidentiality? el ]
queries|[

confidentiality? ml

. . ) unlinkability? hl, h2, h3
authentication? Bob -> Alice: el

unlinkability? h4, h5, hé
] unlinkability? h7, h8, h9
1



Veritpal Language: Simple and Intuitive

Simple Protocol

attacker[active] Alice Bob
principal Bob[] |
principal Alicel[ generates a
generates a ga = G"a
ga = G”a
a
] g >

Alice— Bob: ga
principal Bobl[
knows private ml

knows private ml
generates b
gh = G™b

generates b el = AEAD_ENC(ga”™b, ml, gb)
gb = G*b
el = AEAD_ENC(ga”b, ml, gb) < gh, el
1
Bob— Alice: gb, el el dec = AEAD DEC(gh™a, el, gh)?
principal Alicel[ |
el_dec = AEAD_DEC(gb”a, el, gb)? Alice Bob
]




Guarded Constants,

* This challenge-response protocol is
broken:

 Attacker can man-in-the-middle gs.

* Client will send valid even if signature
verification fails.

Checked Primitives

Challenge-Response Protocol

attacker[active]
principal Server [
knows private s
gs = G”s
1
principal Client[
knows private c
gc = G”c
generates nonce
1
Client— Server: nonce
principal Server[
proof = SIGN(s, nonce)
]
Server— Client: gs, proof
principal Client[
valid = SIGNVERIF(gs, nonce, proof)
generates attestation
signed = SIGN(c, attestation)
1
Client— Server: [gc], attestation, signed
principal Server[
storage = SIGNVERIF(gc, attestation, signed)?
1
queries[
authentication? Server— Client: proof
avthentication? Client— Server: signed

1

19



Guarded Constants, Checked Primitives

* This challenge-response protocol is
broken:

 Attacker can man-in-the-middle gs.

* Client will send valid even if signature
verification fails.

* Adding brackets around gs “guards” it
against replacement by the active attacker.

* Adding a question mark after SIGNVERIF

makes the model abort execution if it fails.

Challenge-Response Protocol

attacker[active]
principal Server [
knows private s
gs = G”s
1
principal Client[
knows private c
gc = G”c
generates nonce
1
Client— Server: nonce
principal Server[
proof = SIGN(s, nonce)
]
Server— Client: |gs, proof
principal Client[
valid = SIGNVERIF(gs, nonce, proof)
generates attestation
signed = SIGN(c, attestation)
1
Client— Server: [gc], attestation, signed
principal Server[
storage = SIGNVERIF(gc, attestation, signed)?
1
queries[
authentication? Server— Client: proof
avthentication? Client— Server: signed

1

20



Passive Attacker

* Can observe values as they cross the
network.

* Cannot modify values or inject own
values.

* Protocol execution happens once.




Active Attacker

* Can inject own values, substitute
values, etc.

* Unbounded protocol executions.

* Keeps learned values between
sessions (except if constructed from
fresh values.)

22




Verifpal Analysis Logic

RESOLVE. Resolves a certain constant to its assigned value (for example, a primitive or an
equation). Executed on 74, the set of all values known by the attacker.

DEeconsTRrRUCT. Attempts to deconstruct a primitive or an equation. In order to deconstruct
a primitive, the attacker must possess sufficient values to satisfy the primitive’s rewrite
rule. For example, the attacker must possess k and e in order to obtain m by deconstructing
e = ENC(k, m) with k. In order to reconstruct an equation, the attacker must similarly
possess all but one private exponent. Executed on 74, the set of all values known by the
attacker.

REcoNsTRUCT. Attempts to reconstruct primitives and equations given that the attacker
possesses all of the component values. Executed on 74, the set of all values known by the
attacker, as well as on 7p, the values known by the principal whose state is currently being
evaluated by the attacker.

EqurvaLize. Determines if the attacker can reconstruct or equivalize any values within ¥p
from ¥,. If so, then these equivalent values are added to 7.

23



Verifpal Primitive Specifications (PrimitiveSpec)

* DecomposE. Given a primitive’s output and a defined subset of its inputs, reveal one of its
inputs. (Given ENC(k, m) and k, reveal m).

 Recomposk. Given a defined subset of a primitive’s outputs, reveal one of its inputs. (Given
a, b,reveal xifa, b, _ = SHAMIR_SPLIT(x)).

» REwRITE. Given a matching defined pattern within a primitive’s inputs, rewrite the primitive
expression itself into a logical subset of its inputs. (Given DEC(k, ENC(k, m)), rewrite
the entire expression DEC(k, ENC(k, m)) to m).

 REBUILD. Given a primitive whose inputs are all the outputs of some same other prim-
itive, rewrite the primitive expression itself into a logical subset of its inputs. (Given
SHAMIR_JOIN(a, b) where a, b, ¢ = SHAMIR_SPLIT(x), rewrite the entire expression
SHAMIR_JOIN(a, b) to x).

24



Constant y O
| Knowl M
8 Fresh, KnownBy, Guard, Leaked, Parse g:‘;:glg;alsap Mutate
Q. Declaration, Qualifier —— | . Const — Value PrincipalState
> « Creator for Next Run
- || [Primitive y ’ gEOW”BV
] . ase.. Ga =
g Na‘me.r,' Arguments, Check, g’attacker
,c—qc [PrimitiveSpec = gb..
> Equation
Values, rules (g =g») ga, el
—
/ ™\ [gb], e2
RecomposeRule -—
DecomposeRule Recompose(a,b)
Decompose(ENC(k, X & a,b,_ <
m),k) = m SHAMIR _SPLIT(x)
I | \ | ]
A\

(Rewrlte(Rule . Rebuﬂde(lle | Resolve Deconstmw, 4 \i{_eiconstruct Equivalize
DEC(k,ENC(k, m SHAMIR_JOIN(a,b _ oA “Kom - A
>m > X © a,b,_ = §a =¢3a DEC(km)'/(_' " MAC(X, m) ga’b = gb"a

- SHAMIR_SPLITCO ) g R SR

,
y
_ '

At - confidentiality? nd: When the following values are controlled by Attacker: N

& Queries Analysis Translate to Coq

Protocol Modeling and
Verification

*Work with Coq Library to perform more

*Check for contradiction to queries after . \
each run in-depth analysis

e|terative process through intuitive
modeling and optional further Coq

*Terminate when no new values are being sosloline

learned




Stage 1: All of the elements of passive attacker analysis, plus constants and equation
exponents may be mutated to nil only and not to each other (for equations, this means that
g”a mutates to g*nil but not to g”b).

Stage 2: All of the elements of Stage 1, plus non-explosive primitives are mutated but
without exceeding a call depth that is pre-determined in relation to the way in which they
were employed by principals in the Verifpal model. For example, HASH(HASH(x) ) will
not mutate to HASH(HASH(HASH(y))) (since the call depth is deeper in the mutation), and
ENC(HASH(K), y) will not mutate to ENC(PW_HASH(k), k) (since the “skeleton” of the
original primitive does not employ PW_HASH, but HASH).

Stage 3: All of the elements of Stage 2, with the inclusion of explosive primitives.

Stage 4: All of the elements of Stage 3, with the addition of constants and equation
exponents being replaced with one another and not just nil.

Stage S: All of the elements of Stage 4, with the addition of primitives being allowed an

infinite call-recursion depth (so long as this matches their “skeleton” as defined in Stage 2).

Preventing State Space Explosion with Stages

26



Signal in Verifpal: State Initialization

e Alice wants to initiate a chat with Bob.

* Bob’s signed pre-key and one-time pre-
key are modeled.

Signal: Initializing Alice and Bob as Principals

attacker[active]

principal Alicel
knows public c0, cl, c2, c3, c4
knows private alongterm
galongterm = G"alongterm

]

principal Bob[
knows public c0, cl, c2, c3, c4
knows private blongterm, bs
generates bo
gblongterm = G"blongterm
gbs = G"bs
gbo = G"bo
gbssig = SIGN(blongterm, gbs)



Signal in Verifpal: Key Exchange

* Alice receives Bob’s key information
and derives the master secret.

Signal: Alice Initiates Session with Bob

Bob -> Alice: [gblongterm], gbssig, gbs, gbo
principal Alice|
generates ael
gael = G™ael
amaster = HASH(cO, gbs™alongterm, gblongterm™ael, gbs”ael, gbo™ael)
arkbal, ackbal = HKDF(amaster, cl, c2)

28



Signal in Verifpal: Messaging

Signal: Alice Encrypts Message 1 to Bob

principal Alicel
generates ml, ae2
gae2 = G™ae2

Signal: Bob Decrypts Alice’s Message 1

principal Bob|

valid = SIGNVERIF(gblongterm, gbs, gbssig)? bksharedl = gae2”bs

aksharedl = gbs™ae2 brkabl, bckabl = HKDF(bksharedl, brkbal, c2)

arkabl, ackabl = HKDF(aksharedl, arkbal, c2) bkencl, bkenc2 = HKDF(HMAC(bckabl, c3), cl, c4)

akencl, akenc2 = HKDF(HMAC(ackabl, c3), cl, c4) ml d = AEAD_DEC(bkencl, el, HASH(galongterm, gblongterm, gae2))
el = AEAD_ENC(akencl, ml, HASH(galongterm, gblongterm, gae2)) ]

|
Alice -> Bob: [galongterm], gael, gae2, el



Signal in Verifpal: Queries and Results

* Typical confidential and authentication
queries for messages sent between Alice

Signal: Confidentiality and Authentication Queries

and Bob.
queries|
 All queries pass! No contradictions! O o aebs a1
. . . confidentiality? m2
* Not surprising: Signal is correctly authentication? Bob -> Alice: €2

confidentiality? m3

modeled, long-term public keys are )

guarded; signature verification is
checked.

Signal: 1Initial Analysis Results

Verifpal! verification completed at 12:36:53



Verifpal: Advanced Features

* Protocol phases for temporal logic * Password values that are “crackable”
(forward secrecy, post-compromise unless first hashed using a password-
security). hashing function.

* Leaking values to the attacker (without * Query preconditions: check if a query is
necessarily sending a message). satisfied if and only if another query is

* Unlinkability queries, freshness queries. satisfied also.



Veritpal tor Visual Studio Code

e Syntax highlighting, model formatting,
code completion.

* Protocol diagrams, update live with
your model,

* Insight on hover: show more
information about values, queries, etc.

* Live analysis within Visual Studio =
Code!

Video on next slide...

32



Verifpal for Visual Studio Code

Video Demonstration



Verifpal Translations: Coq and ProVerit

* Verifpal models can be translated to
Coq models (complete with formal
semantics, lemmas and proofs on
primitives),

* ProVerif model templates for further
analysis in ProVerif and potentially
CryptoVerif.




Formalizing Veritpal in Coq

Coq: Verifpal Ring Signatures (Partial)

Theorem ringsignverif_verifl: forall a b c m: constant,
m = RINGSIGNVERIF (67( a )) (6A( b)) (62Cc )) m (
RINGSIGN a (67( b )) (6A( ¢ )) m).
Proof.
unfold RINGSIGN, RINGSIGNVERIF. intros a b c m.
simpl. rewrite equal_constant_true. simpl. reflexivity.
Qed.
Theorem ringsignverif_order_signl: forall a b c m: constant,
m = RINGSIGNVERIF (67( a )) (6A( b)) (6ACc )) m (
RINGSIGN a (67( ¢ )) (6A( b )) m).
Proof.
unfold RINGSIGN, RINGSIGNVERIF. intros a b c m.
simpl. rewrite equal_constant_true. simpl. reflexivity.
Qed.

Coq: Verifpal Diffie-Hellman Semantics

Theorem dh_commutativity: forall x vy,

(DH (6A( x )) y) = (DH (6A( vy )) x).
Proof.

intros x y. rewrite dh_eq. rewrite dh_eq.

rewrite < mult_commute. reflexivity.
Qed.

Coq: Verifpal Authenticated Encryption

Theorem aead_enc_dec: forall k m ad: constant,
AEAD_DEC k (AEAD_ENC k m ad) ad = m.
Proof.
unfold AEAD_ENC, AEAD_DEC;
intros k m ad; rewrite equal_constant_true;
rewrite equal_constant_true; try auto.
Qed.
Theorem aead_enc_dec_2: forall k m ad c: constant,
c = AEAD_ENC k m ad — m = AEAD_DEC k c ad.
Proof.
intros k m ad c H.
rewrite — H. rewrite — aead_enc_dec. reflexivity.
Qed.

Coq: Verifpal Symmetric Encryption

Definition ENC(key plaintext: constant): constant := ENC_c key plaintext.

Definition DEC(key ciphertext: constant): constant :=
match ciphertext with
| ENC_c k m = match k =? key with
| true = m | false = ENC_c k m end
| _ = ciphertext end.
Theorem enc_dec: forall k m: constant, DEC k (ENC k m) = m.
Proof.
unfold ENC, DEC; intros k m;
rewrite equal_constant_true; try auto.
Qed.

35



Protocols Analyzed wit

Signal secure messaging protocol.
Scuttlebutt decentralized protocol.

ProtonMail encrypted email service.

Telegram secure messaging protocol.

DP-3T contact tracing protocol.

Verifpal

® ® 1

is! HKDF(HMAC(bckba2, c3), c1, c4) now conceivable by reconstructing with HMAC(bckba2, c3), c1

fish /Users/nadim/Documents/git/verifpal

y c4
D 1! m2 found by attacker by deconstructing AEAD_ENC(bkenc3, m2, HASH(ghlongterm, galongterm, g
be)) u1th HKDF(HMAC(bckba2, c3), c1, c4)
bkenc3 found by attacker by reconstructing with HMAC(bckba2, c3), c1, c4
brkab1 found by attacker by equivocating with HKDF(bkshared1, brkbal, c2)
brkba2 found by attacker by equivocating with HKDF(bksharedZ, brkab1, c2)
bkshared1 found by attacker by reconstructing with ghfattacker_0 t
bkshared2 found by attacker by reconstructlng with ghattacker_0 (
bkshared1 resolves to gae2Abs (dept
galongtermAbs found by attacker by equivocating with bkshared1
gae1rbs found by attacker by equivocating with bkshared1
bkshared2 resolves to gae2Abe
m2 is obtained by the attacker as m2
D e2, sent by Attacker and not by Bob and resolving to AEAD_ENC(bkenc3, m2, HASH(gblongterm,
galongtelm, ghe)), is used in primitive AEAD_DEC(akenc3, e2, HASH(ghlongterm, galnngtelm, ghe)) in A
lice's state

Result! confidentiality? m1: m1 is obtained by the attacker as m1

Result! authentication? Alice -> Bob: el: e1, sent by Attacker and not by Alice and resolving to A
EAD_ENC(akenc1, m1, HASH(galongterm, ghlongterm, gae2)), is used in primitive AEAD_DEC(bkenc1, e1, HA
SH(galongterm, ghlongterm, gae2)) in Bob's state

Result! confidentiality? m3: m3 is obtained by the attacker as m3

Result! authentication? Alice -> Bob: e3: e3, sent hy Attacker and not by Alice and resolving to A
EAD_ENC(akenc5, m3, HASH(ghlongterm, galongterm, gae3)), is used in primitive AEAD_DEC(bkenc5, e3, HA
SH(ghlongterm, galongterm, gae3)) in Bob's state

Result! confidentiality? m2: m2 is obtained by the attacker as m2

Result! authentication? Bob -> Alice: e2: e2, sent by Attacker and not by Bob and resolving to AEA
D_ENC(bkenc3, m2, HASH(ghlongterm, galongterm, ghe)), is used in primitive AEAD_DEC(akenc3, e2, HASH(
ghlongterm, galongterm, ghe)) in Alice's state

! verification completed at 21:27:01
REMINDER Verifpal is experimental software and may miss attacks.
i ice~/D/g/verifpal G:
sI

36



Who’s Using Verifpal?



Verifpal 1n the Classroom

* Verifpal User Manual: easiest way to
learn how to model and analyze protocols
on the planet. Comes with 3 example
protocol models!

* NYU test run: huge success. 20-year-old
American undergraduates with no
background whatsoever in security
were modeling protocols in the first two
weeks of class and understanding securit
goals/analysis results.

18 Verifpal User Manual

Guarding the Right Constants
Verifpal allows you to guard constants
fication by the activ

not

being modified as they cross the network

o e guarded constants?

arely guarded from

‘What interesting new insights will you discover using

In the second message from the above example, we see that. gb is surrounded

by brac]

ts ([1). This makes it a “guarded” constant, meaning that while an

active attacker can still read it, they cannot tamper with it. In that sense it is

“guarded” against the active attacker.

2.7 QUERIES

A Verifpal model is always concluded with a queries block, which contains
essentially the questions that we will ask Verifpal to answer for us as a result
of the model’s analysis. Queries have an important role to play in a Verifpal

model’s constitution, The Verifpal language makes

them very simple to

describe, but you may benefit from learning more on how to properly use
them in your models. For more information on queries, see §3. §2.8 below

shows a quick example of how to illustrate queries in your model.

2.8 A SIMPLE COMPLETE EXAMPLE

Figure 2.1 provides a full model of a naive protocol where Alice and Bob only

ever exchange unauthenti
to send an encrypted mess

shared

questions:

We call this a Mayor-in-the-Middle attack

T

ted public keys (6a and G~b). Bob then proceeds
ge to Alice using the derived Diffie-Hellman |
et to encrypt the message. We then want to ask Verifpal three

s i

YEARS EARLIER...

No,
S VERIFPAL.

A COMPROMISED
\EPHEMERAL KEY

"8L
SOMETHING!
NOT RIEHT,

BUT
PROVERIF-SAMI
THE LONEG-TERM
KEYS HAVE MUTLIA
AUTHENTICATION/

ALICE'S EPHEMERAL KEY...
IT'S THE ONLY THING

KEEPING HER MESSAGES
SAFELY ENCRYPTED...

AN ' N
CHAPTERZ, THE VERIFPAL LANGUAGE 17

Example Equations

principal Server(
generates x
generates y
9x

In the above, gxy and gyx are considered equivalent by Verifpal. In Verifpal,
all equations must have the constant G as their root generator. This mirrors
Diffie-Hellman behavior. Furthermore, all equations can only have two
constants (a”b), but as we can see above, equations can be built on top of
other equations (as in the case of gxy and gyx).

2.6 MESSAGES

Sending messages over the network is simple. Only constants may be sent
within messages:

Example: Messages

Alice -> Bob: ga, el
Bob -> Alice: [gb], e2

Let’s look at the two mes above. In the first, Alice is the sender and Bob
is the recipient. Notice how Alice is sending Bob her long-term public key
ga = G"a. An active attacker could intercept ga and replace it with a value
that they control. But what if we want to model our protocol such that Alice
has pre-authenticated® Bob’s public key gb = 6~b? This is where guarded
constants become useful.

2“Pre-authentication” refers to Alice confirming the value of Bob's public key before
the protocol session begins. This helps avoid having an active attacker trick Alice to use a
fake public key for Bob. This fake public key could instead be the attacker’s own public key

7m7 v

38



Try Verifpal Today

Verifpal is released as free and open source
software, under version 3 of the GPL.

Check out Verifpal today:
verifpal.com

Support Verifpal development:

verifpal.com/donate

Protocol Builder's

Warkbench




