
Cryptographic protocol analysis for
the real world

Nadim Kobeissi

Quarkslab Paris – June 19, 2020

Verifpal

What is Formal Verification?

• Using software tools in order to obtain guarantees on the security of

cryptographic components.

• Protocols have unintended behaviors when confronted with an active

attacker: formal verification can prove security under certain active attacker

scenarios!

• Primitives can act in unexpected ways given certain inputs: formal

verification: formal verification can prove functional correctness of

implementations!

1

Formal Verification Today

Protocols: ProVerif, Tamarin

• Take models of protocols (Signal, TLS)

and find contradictions to queries.

• “Can the attacker decrypt Alice’s first

message to Bob?”

• Are limited to the “symbolic model”,

CryptoVerif works in the

“computational model”.

Code and Implementations: F*

• Exports type checks to the Z3 theorem

prover.

• Can produce provably functionally

correct software implementations of

primitives (e.g. Curve25519 in

HACL*).

• Can produce provably functionally

correct protocol implementations

(Signal*).

2

Symbolic and Computational Models

Computational Model

• Primitives are nuanced (IND-CPA,

IND-CCA, etc.)

• Security bounds (2128, etc.)

• Human-assisted.

• Produces game-based proof, similar

technique to hand proofs.

Symbolic Model

• Primitives are “perfect” black boxes.

• No algebraic or numeric values.

• Can be fully automated.

• Produces verification of no

contradictions (theorem assures no

missed attacks).

3

Symbolic Verification
Overview

• Main tools: ProVerif, Tamarin.

• User writes a model of a protocol in action:

• Signal AKE, bunch of messages between Alice and Bob,

• TLS 1.3 session between a server and a bunch of clients,

• ACME for Let’s Encrypt (with domain name ownership
confirmation…)

• User writes queries:

• “Can someone impersonate the server to the clients?”

• “Can a client hijack another client’s simultaneous
connection to the server?”

• ProVerif and Tamarin try to find contradictions.

4

Symbolic Verification, Still?

• F* and computational models do not allow us to naturally express and
model protocols according to a system based on discrete principals with
internal states.

• Writing a protocol in F* just to check it against security goals on a network:
unreasonable cost/benefit tradeoff.

• Research in symbolic verification is still producing novel results:

• Prime, Order Please! Revisiting Small Subgroup and Invalid Curve Attacks on
Protocols using Diffie-Hellman – Cas Cremers and Dennis Jackson

• Seems Legit: Automated Analysis of Subtle Attacks on Protocols that Use Signatures
– Dennis Jackson, Cas Cremers, Katriel Cohn-Gordon and Ralf Sasse

5

Symbolic Verification is Wonderful

• Many papers published in the past 4 years: symbolic verification proving

(and finding attacks) in Signal, TLS 1.3, Noise, Scuttlebutt, Bluetooth, 5G

and much more!

• This is a great way to work, allowing practitioners to reason better about

their protocols before/as they are implemented.

Why isn’t it used more?

6

Tamarin and ProVerif: Examples

rule Get_pk:

[!Pk(A, pk)]
-->
[Out(pk)]

// Protocol

rule Init_1:
[Fr(~ekI), !Ltk($I, ltkI)]
-->
[Init_1($I, $R, ~ekI)
, Out(<$I, $R, 'g' ^ ~ekI, sign{'1', $I, $R,'g' ^ ~ekI

}ltkI>)]

rule Init_2:
let Y = 'g' ^ z // think of this as a group element check
in

[Init_1($I, $R, ~ekI)
, !Pk($R, pk(ltkR))
, In(<$R, $I, Y, sign{'2', $R, $I, Y }ltkR>)
]

--[SessionKey($I,$R, Y ^ ~ekI)

, ExpR(z)
]->
[InitiatorKey($I,$R, Y ^ ~ekI)]

letfun writeMessage_a(me:principal, them:principal,
hs:handshakestate, payload:bitstring, sid:sessionid) =

let (ss:symmetricstate, s:keypair, e:keypair, rs:key,
re:key, psk:key, initiator:bool) =
handshakestateunpack(hs) in

let (ne:bitstring, ns:bitstring, ciphertext:bitstring)
= (empty, empty, empty) in

let e = generate_keypair(key_e(me, them, sid)) in
let ne = key2bit(getpublickey(e)) in
let ss = mixHash(ss, ne) in
let ss = mixKey(ss, getpublickey(e)) in
let ss = mixKey(ss, dh(e, rs)) in
let s = generate_keypair(key_s(me)) in

[…]

event(RecvMsg(bob, alice, stagepack_c(sid_b), m)) ==>
(event(SendMsg(alice, c, stagepack_c(sid_a), m))) ||
((event(LeakS(phase0, alice))) && (event(LeakPsk(phase0,
alice, bob)))) || ((event(LeakS(phase0, bob))) &&
(event(LeakPsk(phase0, alice, bob))));

7

ProVerif

Tamarin

(also not

fully

automated)

Verifpal: A New
Symbolic Verifier

1. An intuitive language for modeling

protocols (scientific contribution: a new

method for reasoning about protocols in the

symbolic model.)

2. Modeling that avoids user error.

3. Analysis output that’s easy to

understand.

4. IDE integration (Visual Studio Code),

translations to ProVerif and Coq.

8

A New Approach to Symbolic Verification

…without losing strength

• Can reason about advanced protocols

(eg. Signal, DP-3T) out of the box.

• Can analyze for forward secrecy, key

compromise impersonation and other

advanced queries.

• Unbounded sessions, fresh values, and

other cool symbolic model features.

User-focused approach…

• An intuitive language for modeling

protocols.

• Modeling that avoids user error.

• Analysis output that’s easy to

understand.

• Integration with developer workflow.

9

Verifpal Language

• Explicit principals with discrete internal

states (Alice, Bob, Client, Server…)

• Reads like a protocol diagram.

• You don’t need to know the language to

understand it!

• Knows for private and public values.

• Generates for private fresh values.

• Assignments.

10

Verifpal Language

• Explicit principals with discrete internal

states (Alice, Bob, Client, Server…)

• Reads like a protocol diagram.

• You don’t need to know the language to

understand it!

• Constants are immutable.

• Global namespace.

• Constant cannot reference other constants.

11

Verifpal Language: Hashing Primitives

• Unlike ProVerif, primitives are built-in.

• Users cannot define their own

primitives.

• Bug, not a feature: eliminate user error

on the primitive level.

• Verifpal not targeting users interested in

their own primitives (use ProVerif, it’s

great!)

12

Verifpal Language: Encryption Primitives

• Unlike ProVerif, primitives are built-in.

• Users cannot define their own

primitives.

• Bug, not a feature: eliminate user error

on the primitive level.

• Verifpal not targeting users interested in

their own primitives (use ProVerif, it’s

great!)

13

Verifpal Language: Signing Primitives

• Unlike ProVerif, primitives are built-in.

• Users cannot define their own

primitives.

• Bug, not a feature: eliminate user error

on the primitive level.

• Verifpal not targeting users interested in

their own primitives (use ProVerif, it’s

great!)

14

Verifpal Language: Secret Sharing Primitives

• Unlike ProVerif, primitives are built-in.

• Users cannot define their own

primitives.

• Bug, not a feature: eliminate user error

on the primitive level.

• Verifpal not targeting users interested in

their own primitives (use ProVerif, it’s

great!)

15

Verifpal Language: Equations

16

Verifpal Language: Messages and Queries

17

Verifpal Language: Simple and Intuitive

18

Guarded Constants, Checked Primitives

• This challenge-response protocol is

broken:

• Attacker can man-in-the-middle gs.

• Client will send valid even if signature

verification fails.

19

Guarded Constants, Checked Primitives

• This challenge-response protocol is

broken:

• Attacker can man-in-the-middle gs.

• Client will send valid even if signature

verification fails.

• Adding brackets around gs “guards” it

against replacement by the active attacker.

• Adding a question mark after SIGNVERIF

makes the model abort execution if it fails.

[

?

]

20

Passive Attacker

• Can observe values as they cross the
network.

• Cannot modify values or inject own
values.

• Protocol execution happens once.

21

Active Attacker

• Can inject own values, substitute
values, etc.

• Unbounded protocol executions.

• Keeps learned values between
sessions (except if constructed from
fresh values.)

22

Verifpal Analysis Logic

23

Verifpal Primitive Specifications (PrimitiveSpec)

24

25

V
al

u
e

T
y
p
es

Constant

Fresh, KnownBy, Guard, Leaked,
Declaration, Qualifier

Primitive

Name, Arguments, Check,
PrimitiveSpec

Equation

Values, rules (gba = gab)

Resolve

ga = g^a

g^a

Deconstruct

DEC(k,m), k ➞ m

m

Reconstruct

k, m ➞
MAC(k,m)

MAC(k, m)

Equivalize

ga^b = gb^a

Learned Value

Model

DecomposeRule

Decompose(ENC(k,
m),k) = m

RecomposeRule

Recompose(a,b) =
x ⇔ a,b,_ ←
SHAMIR_SPLIT(x)

RewriteRule

DEC(k,ENC(k, m))
→ m

RebuildRule

SHAMIR_JOIN(a,b)
→ x ⇔ a,b,_ =
SHAMIR_SPLIT(x)

PrimitiveSpec

KnowledgeMap
• Principals
• Const ➞ Value
• Creator
• KnownBy
• Phase…

Alice’s PrincipalState
• Const ➞ Value
• Guard
• KnownBy
• Wire…

Bob’s PrincipalState
• Const ➞ Value
• Guard
• KnownBy
• Wire…

ga, e1

[gb], e2

Parse

AttackerState

Mutate

PrincipalState

for Next Run

Ga =
g^attacker
Gb = gb…

Queries Analysis

•Check for contradiction to queries after

each run

•Terminate when no new values are being

learned

Translate to Coq

•Work with Coq Library to perform more

in-depth analysis

Protocol Modeling and
Verification

•Iterative process through intuitive

modeling and optional further Coq

modeling

Preventing State Space Explosion with Stages

26

Signal in Verifpal: State Initialization

• Alice wants to initiate a chat with Bob.

• Bob’s signed pre-key and one-time pre-

key are modeled.

27

Signal in Verifpal: Key Exchange

• Alice receives Bob’s key information

and derives the master secret.

28

Signal in Verifpal: Messaging

29

Signal in Verifpal: Queries and Results

• Typical confidential and authentication

queries for messages sent between Alice

and Bob.

• All queries pass! No contradictions!

• Not surprising: Signal is correctly

modeled, long-term public keys are

guarded; signature verification is

checked.

30

Verifpal: Advanced Features

• Protocol phases for temporal logic

(forward secrecy, post-compromise

security).

• Leaking values to the attacker (without

necessarily sending a message).

• Unlinkability queries, freshness queries.

31

• Password values that are “crackable”

unless first hashed using a password-

hashing function.

• Query preconditions: check if a query is

satisfied if and only if another query is

satisfied also.

32

Verifpal for Visual Studio Code

• Syntax highlighting, model formatting,

code completion.

• Protocol diagrams, update live with

your model,

• Insight on hover: show more

information about values, queries, etc.

• Live analysis within Visual Studio

Code!

Video on next slide…

32

33

Verifpal for Visual Studio Code

Video Demonstration

33

Verifpal Translations: Coq and ProVerif

• Verifpal models can be translated to

Coq models (complete with formal

semantics, lemmas and proofs on

primitives),

• ProVerif model templates for further

analysis in ProVerif and potentially

CryptoVerif.

34

Formalizing Verifpal in Coq

35

Protocols Analyzed with Verifpal

• Signal secure messaging protocol.

• Scuttlebutt decentralized protocol.

• ProtonMail encrypted email service.

• Telegram secure messaging protocol.

• DP-3T contact tracing protocol.

36

Who’s Using Verifpal?

37

Verifpal in the Classroom

• Verifpal User Manual: easiest way to
learn how to model and analyze protocols
on the planet. Comes with 3 example
protocol models!

• NYU test run: huge success. 20-year-old
American undergraduates with no

background whatsoever in security
were modeling protocols in the first two
weeks of class and understanding security
goals/analysis results.

38

Try Verifpal Today

Verifpal is released as free and open source
software, under version 3 of the GPL.

Check out Verifpal today:

verifpal.com

Support Verifpal development:

verifpal.com/donate

39

